
    
    

    
      

   
 

 
     

       
       

     
       

      

     
        

     

        
      

      
      

     
       

      

      
      

     
     
  

       
      

  
   

    
      

 
       

           
      

      
        

       
      

    
     

       
       

     
        

     

       
      

      
       
    

      
      

        
       

     

          
     

        
          

 
                 

          
           

            
        

 
      

       
  

 

 
                 
                  

                  
 

E-textile Microinteractions: Augmenting Twist with 
Flick, Slide and Grasp Gestures for Soft Electronics

Alex Olwal Thad Starner Gowa Mainini 
Google Research, Mountain View, CA 94043, USA 
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Figure 1. E-textile Microinteractions leverage the I/O Braid architecture for soft electronics to combine continuous twist sensing with 
casual, discrete gestures, such as Flick, Slide, Pinch, Grab and Pat. We demonstrate our hybrid interaction techniques through soft 
electronics that can be used for the control of consumer electronics, digital media and for interactive applications. 

ABSTRACT 
E-textile microinteractions advance cord-based interfaces by 
enabling the simultaneous use of precise continuous control 
and casual discrete gestures. We leverage the recently 
introduced I/O Braid sensing architecture to enable a series 
of user studies and experiments which help design suitable 
interactions and a real-time gesture recognition pipeline. 

Informed by a gesture elicitation study with 36 participants, 
we developed a user-dependent classifier for eight discrete 
gestures with 94% accuracy for 12 participants. 

In a formal evaluation we show that we can enable precise 
manipulation with the same architecture. Our quantitative 
targeting experiment suggests that twisting is faster than 
existing headphone button controls and is comparable in 
speed to a capacitive touch surface. Qualitative interview 
feedback indicates a preference for I/O Braid’s interaction 
over that of in-line headphone controls. 

Our applications demonstrate how continuous and discrete 
gestures can be combined to form new, integrated e-textile 
microinteraction techniques for real-time continuous control, 
discrete actions and mode switching. 
Author Keywords 
E-textile; electronic textile; smart textile; interactive fabric; 
wearables; soft electronics; microinteractions; gestures 
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INTRODUCTION 
Integrating capabilities for sensing, feedback and display in 
everyday objects is part of the vision of both ubiquitous and 
wearable computing. It is particularly attractive to overcome 
the boundaries between traditionally rigid devices and soft 
fabric garments, textiles and furniture to enable technology 
that can comfortably co-exist with human-facing materials. 
Recent developments in fabrication, soft electronics and 
miniaturized computation have been instrumental in 
advancing interactive textile concepts and applications. 

Many examples exist that leverage textile topologies and 
electronics to integrate input capabilities. Early commercial 
efforts focused on adding discrete mechanical or touch-
sensitive switches to garments, such as snowboarding jackets 
or gloves with integrated music control [3]. 

With the mass-adoption of multi-touch capacitive sensing in 
mobile devices, there has been significant attention to how 
to embed more expressive interaction. Many recent 
approaches focus primarily on surface patches that enable 2D 
interaction [15][19][20][26][27][28][29][31] or 2.5D 
deformation gestures [10][21][17]. These solutions allow 
absolute 2D positioning and gesture interfaces similar to 
multi-touch devices, such as phones or tablets. The ability to 
track fingers enables both mousing and swipes as well as 
more complex gestures, such as pinch-to-zoom. 

However, interfaces that depend on 2D touch surfaces are not 
always ideal. Wearable and ubiquitous computing allow 
computation to be more widely integrated with everyday 
materials such that our interactions can be more casual and 
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eyes-free. Input devices with affordances that match the 
context of use enable users that may be situationally 
impaired, under high cognitive load, or otherwise require 
fast, unambiguous and efficient input with limited attention 
or effort. 

This work advances recent cord-based concepts, hardware 
and e-textile interfaces, by enabling the combination of both 
precise continuous control and casual discrete gestures. See 
Figure 1. We leverage a recently introduced braided sensing 
architecture to enable a series of user studies, which help us 
design suitable casual gestures and a real-time gesture 
recognition pipeline. To validate the potential for precise 
interactions, we evaluate the performance and stability of 
continuous twisting in a controlled study. We show the new 
capabilities by combining the continuous and discrete 
gestures into hybrid cord interaction techniques that we 
demonstrate in a set of applications. 
CONTRIBUTIONS 
Our contributions include: 

•	 Hybrid e-textile interaction techniques that combine
precise and continuous control with casual and discrete
gestures in a compact textile cord interface.

•	 User-dependent classification of discrete gestures
with real-time recognition (94% accuracy) for eight
gestures (12 participants) informed by our elicitation
study (36 participants).

•	 Quantified performance of user-independent
continuous twisting for relative input, demonstrating
benefits over inline remotes (speed, accuracy and
preference) and similar performance to state-of-the-art
trackpads, based on a formal study (12 participants).

•	 Three applications that show how continuous twist and
discrete flick, pinch, grab, pat and slide gestures could
be used in a cord for microinteractions with devices,
digital media, and entertainment.

RELATED WORK 
This work builds on a large body of sensing and interaction 
techniques developed for electronic textiles. 

Interactive Textiles 
Since the work by Post et al. [25] on “e-broidery,” much 
research in interactive textiles has focused on integrating 
conductive threads into 2D interactive patches to enable 
capacitive sensing. Gilliland et al.’s Textile Interface 
Swatchbook [9] attempted to re-invent components of the 
graphical user interface in such 2D patches. Flexible touch 
matrices have been created through the weaving of 
conductive thread [19][20][26], multi-layer conductive 
fabric [15][20][21][27][31][34], pressure-sensitive textile 
optical fibers [29], plastic film over sensing electrodes [28], 
a piezoresistive elastomer-based soft sensor using electrical 
impedance tomography [42], embroidery [9][25][40], fabric 
screen-printing [41], and metal foils [16]. Other interactive 
textiles are designed to be deformed during interaction [17]. 

Pinstripe [10] utilizes conductive thread to create 1D textile 
interfaces that are manipulated by pinching the fabric. More 
related to this work, some structured textiles rise above the 
2D plane to create new affordances such as pleats and beads 
[9][40] that can be stroked or manipulated. 
Cords 
The affordances of textile-based cords are of particular 
interest as such devices can be quickly grasped and 
manipulated without visual attention. Schwarz et al. [33] add 
sensors to cords to detect touch, pull, and twist; however, 
these sensors are added to the end of the cord and not 
incorporated into the structure. Schoessler et al. [32] 
augment cords with bend sensors to detect knots, piezo 
copolymer coaxial cables to detect kinks, conductive 
polymer sandwiched between two sheets of copper foil to 
detect pressure, and a resistive rubber to detect stretch. They 
use resistance for touch and pressure in a headphone cord 
using conductive yarn woven into the fabric of braided cable 
sleeving. 

Some cord interfaces use retractable strings or embedded 
sensors for interaction [4][5][12][24]. Detecting deployed 
cord length and relative angle allows a 2D or 3D interaction 
space. Wimmer and Baudisch [38] create a touch-sensitive 
cord with absolute positioning using time domain 
reflectometry and, as an example, demonstrate headphone 
volume adjustment. Sousa and Oakley [36] sense the 
position of a conductive bead that slides along a cord. I/O 
Braid [18] describes how capacitive sensing with only 8 
electrodes can detect twists and other gestures performed on 
a cord braided with insulated conductive threads [26] that 
form a repeated trackpad along its length. 
Gesture Elicitation and Grasping 
As we investigate cord-based interaction as an alternative to 
2D surface interaction, it becomes critical to also consider 
how the input device will be grasped and manipulated. 
Human grasping is a well-studied topic in robotics. 
Cutkosky’s taxonomy from 1989 [6] is based on a study of 
human machinists to inform robotic grasping and 
manipulation. The GRASP taxonomy of human grasp types 
[8] provides a comprehensive characterization of 33 static 
grasp types, involving hand interactions with rigid objects. 
Bell [2] shows many examples of how robotic mechanisms 
could be extended to textiles and strings. The grasping of 
flexible and deformable objects is, however, a challenging 
research area. 

Wobbrock et al.’s work with surface gestures [39], and Ruiz 
et al.’s work with mobile motion gestures [30], demonstrate 
the benefits of involving end users to inform gesture sets for 
new interaction devices, especially when best-practices are 
still being formed. Lee et al. [13] use this approach to provide 
insights into bimanual interaction with deformable displays. 
Inspired by these strategies, we ground our single-handed, 
cord interaction technique design in existing taxonomies and 
a gesture elicitation study. 



 
       

         
        

       
        
      

   
      

       
        

        
        

        

   
         

      
        
  

       
         

       
          

         
  

        
         

   

    
         

      
        

      
       
    

       
      

      
         

   
 

        
       

         
 

       
          

          
          

           
        

    

   
       

          
       

 
       

     
      

      

   
        

          
         

   

    
         

          
    

    
      

         

      
         

        
        

       

 
        

      
      

     
     

          
        

         
     
        

      
       

 
        

         
 

Microinteractions 
Ashbrook [1] describes microinteractions as requiring less 
than four seconds to initiate and complete. They are typically 
designed to minimize visual, manual and mental attention. 
This reduced distraction benefits wearable computing and 
ubiquitous computing in particular. Cord interfaces are often 
motivated by their suitability to such non-primary and micro-
interaction tasks [5][12][18][24][32][33][38]. 

Recently, Sharma et al. [35] systematically explored single-
handed grasping microgestures, informed by an elicitation 
study with over 2400 gestures performed with 12 handheld 
objects. Directional and continuous gestures were the most 
popular in Sharma et al.’s study, which partially inspired our 
emphasis on discrete flicks and precise continuous twist. 

DESIGN OPPORTUNITIES: CORD MICROINTERACTIONS 
To advance cord user interfaces, we wish to leverage the 
unique qualities of capacitive sensing textile cords. We 
identified three opportunities that frame our design for 
expressive microinteractions: 
•	 Casual gestures. With minimal attention or effort, and 

preferably eyes-free, the user should be able to trigger 
different basic functionality with one hand. We can 
avoid the need to acquire a small input device, since 
previous work shows how the whole cord can be made 
sensitive. 

•	 Precise manipulation. In a similar manner, it is 
desirable to support precise control of at least one 
continuous parameter. 

•	 Leveraging affordances. Cord stiffness resists twisting 
and can provide implicit feedback to the user as to the 
amount of provided input. Interfaces should leverage 
those tangible characteristics for implicit user feedback. 

DISCRETE GESTURES: ELICITATION TO INFORM SET 
In order to design an expanded gesture set of discrete 
gestures we wanted to gather insights into participants’ 
imagined interactions with a gestural cord interface. Our first 
experiment is thus an elicitation study that explores which 
gestures users may expect from textile cord interaction 
without instruction. To provide a relatable task, we focused 
on controlling earphones. 

Participants 
We recruited 36 participants (11 females, six left-handed, 
one ambidextrous) from our institution who were 
compensated with a $25 gift card for products or services. 
Apparatus 
The participants were outfitted with a wireless earphones 
prototype where the two ear pieces are tethered with a 
braided cord. This device was intended to emulate the design 
of a common form factor for wireless earphones (e.g., Jakan 
[14] or Pixel Buds [23]). In order not to influence the 
participants’ imaginations, the device was not functional and 
did not provide feedback. 

Figure 2. Gesture elicitation with imagined touch sensing.
 
Three derived classes cover 83.3% of the elicited gestures.
 

Task and Procedure 
Participants were asked to demonstrate how they would 
change the volume using the cord and to describe and explain 
their interactions and reasoning for choosing them. 

Results 
Participants suggested a wide range of interaction styles, 
including swiping, sliding, flicking, holding, pinching, 
pulling and squeezing. We group them into different classes, 
described below and shown in Figure 2. 

Flick (50% of participants) 
Flicks are quick directional gestures orthogonal to or along 
the cord. As half of the participants proposed some variation 
of “Swipe” or “Index-Hold & Thumb Swipe”, this was the 
most popular class. 

Slide (25% of participants) 
Slides are gestures where the fingers move along the length 
of the cord. Nine participants performed a variant of a “Pinch 
& Slide” gesture. 
Grasp, Single-touch (8.3% of participants) 
Three participants performed variations of single-touch 
pinching, making contact with the cord in different ways. 

Impractical: Multi-touch, Absolute Position, Pulling force 
The five least popular categories had only one or two 
participants performing the gesture. These gestures were also 
not practical to implement with the current architecture and 
were thus not considered for the gesture set. 

Discussion 
The GRASP taxonomy [8] classifies gestures based on 
thumb opposition type, grasp type (power, intermediate or 
precision) and finger coordination. For gestures with the 
thumb abducted, we observed precision gestures with the 
finger pads, either using palmar pinches (thumb and finger), 
or with a prismatic finger arrangement (2 fingers and thumb). 
Coarser gestures used palm contact, while wrapping the 
fingers around the cord. Certain gestures combined a grip 
with subsequent manipulation, where the thumb was 
abducted such that it could interact further with the cord. 

Going beyond static pose, the Grasping Microgestures work 
maps gestures performed during grasping [35]. Their study 



         
     

         
      
       
         

      
      

      
         

      
   

       
      

       
      

       
       

      
    

         
    

      

       
     

    
         

       
       

          
      
        

      
          

     

         
        

       
       

    
     

       
       
        
   

 
                     

                    
                   

                
          
              

              
          

Figure 3: Based on the gesture elicitation, we choose to support three gesture classes (Flick, Slide, Grasp), which represent 83.3% of
 
the elicited gestures. The plot shows data from one repetition (out of nine) for the 12 participants (horizontal axis) for the eight
 
gestures (vertical axis). Each sub-image shows a plot of 16 overlaid feature vectors, which has been interpolated to 80 observations
 
over time. Participants performed gestures without feedback and in their own style, which required user-dependent classification.
 
Some potential issues can be seen in the time series:
 
(A/B) Temporal variations between Flick directions differ between participant group A and B.
 
(C) Flick vs. Flick→hold 3s was potentially less distinguishable for some participants, compared to group A/B. 
(D) Participants with examples of very similar Pinch and Grab gestures. 

finds that directional and continuous swipes are most popular 
for microinteractions among their participants, which 
matches our results for Flicks and Slides. Their second most 
popular gesture, Tap, also aligns with the single-touch 
gestures that we observed. It is encouraging that despite 
different object types and device form factors, we reach a 
similar observation; that one-handed gestures based on 
relative motion seem well-suited for microinteractions. 

To inform continued development, it is important to not 
prioritize solely based on popularity. We must also account 
for desired expressivity and technical feasibility, especially 
since elicitation studies typically avoid limiting participants’ 
imagination by providing technical constraints, such as 
sensing limitations or mechanical stability. 

In our study, we clustered impractical gestures into a 
dedicated “exclusion class.” While multi-touch and absolute 
position are intriguing to explore in future work, our current 
sensing approach does not disambiguate between multiple 
simultaneous contacts [18]. Future hardware extensions, 
such as time-domain reflectometry [38], could enable 
capabilities beyond relative motion. We also believe that the 
demonstrated pulling-force gestures are impractical for cord-
based interaction, given potential mechanical instabilities 

and disconnects. Furthermore, the limited attention to these 
gestures in our study aligns with previous work [35]. 
DISCRETE GESTURES: USER-DEPENDENT CLASSIFIER 
The results from the elicitation experiment and I/O Braid’s 
capabilities inspired us to focus on three classes, Flick, Slide 
and Grasp, which would cover 83.3% of the gestures. 

In the next session, we collected data from another set of 
participants performing our candidate gestures to guide the 
development of a machine learning pipeline. Our goal was to 
expand the expressivity of cord interaction through per-user 
trained classifiers to allow a broad set of casual gestures 
based on the three classes. 

Five New Discrete Motion Gestures: Slide and Flicks 
We decided to investigate five motion gestures, where the 
user’s changing contact with the cord triggers a discrete 
action. First, we designed variations of a flick gesture, 
inspired by the most popular suggested swiping gesture 
(18/36 participants). Second, we designed a slide gesture, 
inspired by the second most popular style (9/36 participants). 
• Flick × 2: CW ⟳ and CCW ⟲ 
• Flick→hold 3s × 2: CW ⟳ and CCW ⟲ 
• Slide down 



       
       

      
       

      
   
     
    

 
     

      
       

       
         
       

       
     

 
     

    
           

       
       

          
    

   
        

        
 

        
          

        
         

          
        

     
      

   

       
        

          
         

 
     

     
   

           
        

      
    

     

           
        

      
      

          
         

 
        

       
         

         
       

         
       

         
          

        
          

      
       
       
   

        
          

        
       

      
       
          

          
   

 
         

     
      

     
 

Three Grasping Styles: Pinch, Grab and Pat 
Inspired by the single-touch variations and the Grasping 
Microgestures work’s positive feedback on taps [35], we 
include three discrete single-touch events for user-dependent 
detection of contact (pinch, grab and pat): 
• Pinch (thumb and index finger) 
• Grab (grab in a fist) 
• Pat (tap with open hand) 

Participants 
We recruited 13 participants (seven females) from our 
institution who were compensated with a $25 gift card for 
products or services. Our institution only allows collection 
of age ranges. Participants were between 18–24 (n=2), 25– 
34 (n=8) and 35–44 (n=3) years old. All were right-hand 
dominant and performed the tasks in a standing position with 
their dominant hand. We excluded one participant from 
analysis due to corrupt data. 

Apparatus 
The experiment used an Apple MacBook Air 13" 
(MacBookAir7,2; 1440×900 pixel display resolution; 1 pixel 
= 0.1945 mm). For our data collection, we used the I/O Braid 
development kit [18], which provides 16 integer values from 
the 4×4 repeating capacitive sensing matrices along the 
braided textile cord. We used a braid that was ~500 mm long 
with ⌀ 4 mm. 

Task and Procedure 
Participants performed 10 repetitions for the eight discrete 
gestures. We removed the first repetition from our analysis 
and classification. 

For each gesture set, the experimenter demonstrated the 
gesture and let the participant practice up to five times. When 
ready, the experimenter started the data collection for that 
gesture. Participants saw a 2s countdown on the screen, after 
which they made contact with the cord and performed the 
gesture. Immediately after completion, they released the cord 
and pressed the space bar, which started the countdown for 
the next repetition. The data collection took approximately 5 
minutes per participant. 

We continuously recorded the 16 raw capacitance values 
along with metadata (e.g., participant #, gesture type, 
repetition # and time stamps). We thus used 8 gestures × 9 
repetitions × 12 participants = 864 samples for our analysis. 

Classification 
We implemented a Python-based toolchain, using machine 
learning (scikit-learn [22] and tslearn [37]) for time series 
analysis and classification. 

Sample length varies according to the time it took to perform 
the gesture in a repetition. We resample each gesture time 
series with linear interpolation. Figure 3 shows 96 samples 
(12 participants × 8 gestures) with each having 16 features 
linearly interpolated to 80 observations over time. 

Based on the data set size and characteristics we decided to 
use a time-series specific support vector classifier with a 

Figure 4. Confusion matrix from 9-fold cross-validation for 12 
participants (9 classifications/gesture/participant), with a 
resulting maximum of 108 correct classifications for each 
gesture. Average recognition accuracy is 93.8%. 

global alignment kernel [7] using the implementation 
available in tslearn. We ran a 9-fold leave-one-repetition-out 
cross-validation for each user across the gestures (train on 8 
repetitions, test on 1 repetition × 9 permutations). 

Discussion 
The average recognition accuracy was 93.8%. All gestures 
are recognized with an average accuracy exceeding 90% 
except pinch which has a recognition accuracy of 86.1% due 
to confusion with grab and pat, as shown in Figure 4. These 
numbers are encouraging, though there is limited ecological 
validity in such a laboratory study where participants may 
perform the gesture more consistently than they would in the 
wild. One drawback to using this recognition approach is that 
the user must make the full gesture and release it before 
recognition occurs, possibly slowing interaction speed. In the 
future, audio or visual feedback could assist the user in 
performing the gesture properly since real-time sensing is 
available in parallel. It is encouraging that such a low-
resolution sensor matrix (eight electrodes) can enable 
additional gestural expressivity and demonstrated robustness 
beyond what was demonstrated in I/O Braid [18]. Notable 
here is that there are inherent relationships in the repeated 
sensing matrices that are well-suited for machine learning 
classification. The support vector classifier enables quick 
training with limited data, which makes a user-dependent 
interaction system reasonable. Training for a typical gesture 
should take ~30s = (~2s pause + 1s gesture) × 10 repetitions, 
which is comparable to the amount of time required to train 
a fingerprint sensor. 



  
        

          
      

         
        

         
       

      
      

     

       
       

        
          

       
   

       
       

      
       

        
      

        
      

       
      

     
   

       
       

         
         

     
        

   

 
       

     
   

       
           

           

        
       

      
    

          
       

        
           

        
          

       
          

          
           

          
             

         
    
        

         
   

  
           

     
       
       

         
         

         
         
   

      
         
       

       
         
       

           
        

       

                     
            
        

       
       

         
         

       
         
   

 

 
        

        
         

          
            

a) I/O Braid b) Inline remote c) Touchpad 
Figure 5. Our formal evaluation (12 participants) suggests that 
I/O Braid’s user-independent continuous twist interaction is 
faster than an inline remote control and on par with state-of-
the-art trackpads. 

User-independent Classification 
Participants were allowed to freely perform the eight 
gestures in their own style without feedback as we wanted to 
accommodate individual differences since the classification 
of grips is highly dependent on user style (“contact”), 
preference (“how to pinch/grab”) and anatomy (e.g., hand 
size). Our gesture pipeline was thus designed to require user-
dependent training as this resulted in more consistency 
within each user’s data, but various differences across 
participants. Examples of potential differences are 
highlighted in Figure 3: 

•	 Group A (five participants) seem to perform CW/CCW 
differently from group B participants (three participants) 

•	 Flick and Flick→hold 3s seem less distinguishable for 
group C (four participants), compared to group A and B. 

•	 Two participants in group D seem to perform Pinch vs. 
Grab in a very similar manner. 

Unsurprisingly, these differences result in low average 
accuracy in leave-one-user-out cross validation analysis. In 
future work, user-independent results could be improved 
with stricter instructions to ensure consistency across users, 
capture of data from a larger population, and in more 
ecologically diverse scenarios. Additionally, users could be 
clustered into similar groups which are then used to create 
independent per-group recognizers. Real-time feedback will 
also help mitigate differences as the user generally learns to 
adjust their behavior to achieve better results. 
QUANTIFYING PERFORMANCE OF CONTINUOUS TWIST 
FOR PRECISION AND CONTROL 
The per-user trained gesture recognition enabled eight new 
discrete gestures, which shows how a variety of actions 
could be triggered from the textile cord. For continuous 
interactions, however, we also wanted to quantify how well 
the previously introduced user-independent, continuous 
twist [18] performs for precision tasks, such as controlling 
music volume. 

Participants 
The same 12 subjects as in the previous experiment 
participated without additional compensation. 

Task and Procedure 
To evaluate performance, participants used three different 
input devices (Figure 5) for 1D movement to match a target 
position that alternated between the left and right sides of the 

Figure 6. Experimental targeting task to assess input device 
performance. Participants move cursor to adjust a shape in 
order to match the outline of a target shape. Reciprocal 
alternation between left and right sides of the display ensures 
that they cross the center of the screen in each trial. 

screen. The interface displayed the target as a rectangular 
outline, which the participant was instructed to “fill” by 
using the different input devices to expand/shrink a solid 
rectangle (Figure 6). 

The target position was randomized in each trial between 100 
to 600 pixels (right side) and -100 to -600 (left side). Thus, 
in each trial the target could appear in a range of 500 pixels, 
offset by at least 100 pixels from the vertical center line. The 
reciprocal alternation of the target location ensured that 
participants were forced to cross the center of the screen in 
each trial. Target times were calculated from the crossing of 
the center line to the completion of the trial. There was no 
way to fail a trial. Instead, to complete each trial and progress 
to the next, participants had to reach the target zone (target 
±50 pixels) and remain inside for a specific time (1000 ms). 
The timer was reset if they left the zone before 1000 ms had 
passed. Our software logged all interactions and event times. 
Apparatus: I/O Braid, Buttons and Scroll 
To contextualize our results, we compare I/O Braid with two 
baselines, a trackpad and the common volume remote control 
box on headphone cords. 

I/O Braid: Continuous Twist 
We used the same I/O Braid hardware as in the previous 
experiment using previously described algorithms [18] to 
track the phase relationships across the matrix to derive 
clockwise (CW) or counterclockwise (CCW) twist. The 
relative motion across the touch matrix is accumulated into a 
positive or negative angle while the user is gripping 
or twisting the device. Upon release, the device re-centers at 
0 (similar to an elastic joystick) and the fill resets to 
centerline on the screen. 

Buttons: In-line Remote with Buttons (Baseline 1) 
As a first baseline, we assess performance relative to an in-
line remote with mechanical buttons. We use a 
microcontroller with a SparkFun TRRS 3.5 mm four-ring 
breakout jack to interface with a pair of Samsung Galaxy 8 
earbuds. In our implementation, each button press on plus or 
minus moves 10 pixels to the left or right, respectively. The 
user can long-press for (an empirically derived) non-linearly 
accelerated change, which scales the increment by 5%: 

x0 = 0 , v0 = ±10 , xt+1 = xt + vt , vt t+1 = 1.05 * vt, 

where xt is the cursor position at time t, and vt is the value 
used to increment the cursor position at each time step. This 
method was designed to simulate a comparable behavior to 
that of typical volume control on smart phones. 



      
          

       
      

      
       

          
      

     
     

     

 
      
          
           

        
    

      
          

         
        

         
          

   
        

       

 
         

      
       

       
         

     

           
            

         
          

        
        

      

          
         
        
      

           
       

    
      

         
      

      
  

 
      

         
      

       
          

      
   

       
       

   
       

       
            
         

          
        

        
     

 
    

        
       

        
            

         
         

     
                  

                    
                      

                     
 

Figure 7. a) Task completion times for the three input devices. I/O Braid was faster than Buttons (statistical significance). 
b) I/O Braid had more excess motion compared to Buttons and Scroll. The boxplots show median values with quartiles and min/max 
extent. c) Weighted average subjective feedback. We mapped the 7-point Likert scale to a score in the range [-3, 3]. We multiplied 
the score by the number of times the technique received that rating and computed an average for all the scores. 

Scroll: Non-textile, Rigid Trackpad (Baseline 2) 
As a second baseline, we use a gold standard touch input 
device. We initially considered state-of-the-art touch- or 
pressure-sensitive textile matrices [16][19][26] but wanted 
an idealized input device without the trade-offs from 
different textile sensor implementations and form factors. 
Thus, as our ideal sensor we use a state-of-the-art laptop 
trackpad for its responsiveness and precision. Further, its 
rigidity allows us to focus on pure touch sliding performance, 
without confounding variations in deformability, texture and 
stiffness in different textile sensing topologies. 

Design 
We performed a repeated-measures, within-subjects study 
with three input devices (I/O Braid, Buttons, and Scroll) and 
target locations 100 to 600 pixels from the vertical center line 
and starting point for each trial. The order in which the 
techniques were presented was counterbalanced across 
participants. The participant started with a practice block of 
10 trials, followed by a pause and then a test block with 50 
trials. These 60 trials were performed for each technique, for 
a total of 180 trials per participant. After each block of 
practice and test trials, participants rated the technique with 
regards to ease of use, accuracy, and tactile feel and were 
invited to provide additional feedback through comments. 
After using all input devices, they were interviewed about 
their final overall preference and reasoning. 

Analysis 
Input device (I/O Braid, Buttons and Scroll) is our 
independent variable, and we have three dependent 
variables; time on task (milliseconds), total motion, and 
motion during end-of-trial. We captured all participant 
interaction in order to compute motion (pixels) as a measure 
of stability for each technique. 

We analyze cursor motion during the entire trial, as well as 
cursor motion during the last 1000 ms of each trial and in the 
range ±50 pixels of the target position (participants were 
required to stay within this target zone for 1000 ms). 

Excess motion was measured as the difference between 
target distance and actual pixel travel. Similarly, excess 
motion during end-of-trial, was computed as total distance 

traveled while in range ±50 pixels from target and a target 
value of 50. If participants traveled exactly 50 pixels to target 
value, it would indicate perfect motion. The excess motion 
would increase with undershooting, overshooting or signal 
jitter. Buttons have no jitter due to their discrete input and 
trackpads are designed with filters to help reduce jitter. We 
used no filtering for I/O Braid. 

To visualize performance variations across different target 
distances we divided the data into 50-pixel intervals for 10 
ranges (100–149, …, 550–599) and calculated mean values 
for each dependent variable in these ranges. Each interval 
corresponds to approximately 10 mm. 
Hypotheses 
Prior to the experiment we formulated three hypotheses: 

H1: I/O Braid will be faster than Buttons, since the 
continuous control provides both fine and fast 
manipulations with its analog-style rate control. 

H2: Scroll will be faster than I/O Braid, given that a rigid, 
state-of-the-art touch sensor affords more robust and 
consistent manipulation. 

H3: I/O Braid will have more excess motion than Buttons 
and Scroll, given their mechanical stability and filtering. 

Task Completion Time 
There was a statistically significant difference between input 
devices as determined by a one-way ANOVA (F(2,1942) = 
78.437, p < 0.001). Effect size is 0.93. A Tukey post hoc test 
revealed that I/O Braid (1654.3 ± 594.3) was significantly 
faster than Buttons (2033.2 ± 762.1 p < 0.001) but no effect 
was found when compared with Scroll (1681.4 ± 417.0, p = 
0.703). See Figures 7a and 8a. These results support 
hypothesis H1, but we reject H2. 

Motion 
Motion in Entire Trial 
For accumulated excess motion in matching target distances, 
there was a statistically significant difference between input 
devices, as determined by a one-way ANOVA (F(2,1942) = 
119.297, p < 0.001). The effect size is 0.89. A Tukey post 
hoc test revealed that I/O Braid (197.7 ± 370.2) had 
significantly more motion than Buttons (18.1 ± 47.7, p < 



          
        

         
          

         
         

        
       

           
          

         
             

    

  
  

        
           

       
        

          
        

          
          

         
      

  
  

    
           

       
             
        

             
           

 
         

       
            

           
       

         
    

      
      

           
      

     
 

        
      

          
        

     
        

         
       

         
         

          
        

          
           

       
            

        
             

       
         

            
        

        
         

        
          

          
        

       
     

         
          

         
        
         

      
       

 
                    

                    
                  

 

Figure 8. a) Mean completion times for target distances show that Buttons was consistently slower. b) Mean motion (pixels) vs. target 
distance. I/O Braid has more motion across all target distances. We also observe a potential increase in motion for the largest distances 
(550-600 pixels). c) Mean motion (pixels) for different target distances while locking on target. I/O Braid has consistently more motion. 

0.001) and Scroll (48.8 ± 105.9, p < 0.001). These results 
support hypothesis H3. See Figures 7b and 8b. 

Motion in End of Trial, While Locking on Target 
Further, when isolating motion during the last 1000 ms of 
each trial and in range of the target (±50 pixels), the means 
of excess motion were higher for I/O Braid (Figures 7b and 
8c). There was a statistically significant difference between 
input devices as determined by a one-way ANOVA 
(F(2,1942) = 1268.863, p < 0.001). Effect size is 0.57. A 
Tukey post hoc test revealed that I/O Braid (111.5 ± 65.9) 
had significantly more excess motion than Buttons (13.0 ± 
11.8, p < 0.001) and Scroll (14.4 ± 20.3, p < 0.001). These 
results support hypothesis H3. 

Subjective results 
Likert Scales 
Participants rated each input device on 7-point Likert scales 
for ease of use, accuracy and tactile feel. Ratings for I/O 
Braid and Scroll were overall positive as opposed to Buttons, 
as shown in Figure 7c. The result suggests that participants 
regarded I/O Braid to be on par with Scroll. Notably, while 
participants more frequently rated higher levels of accuracy 
with I/O Braid than Buttons (10 vs. 6 participants), their 
cursors moved much more with I/O Braid. We interpret that 
the movement did not bother them since they were still able 
to complete the task faster than Buttons and on par with 
Scroll. 

Ratings and T-tests 
We compared subjective ratings and found significant 
differences for ease of use and tactile feel. I/O Braid was 
rated significantly easier to use than Buttons, t(12) = 3.282 , 
p < 0.01, but no effect was found with Scroll t(12) = 0.671, 
p = 0.515. I/O Braid was also rated as having significantly 
better tactile feel than Buttons, t(12) = 3.671 , p < 0.01, but 
no effect was found with Scroll t(12) = 0.940, p = 0.366. 

Interviews 
Based on interviews, 8 out of 13 (62%) participants preferred 
using I/O Braid when compared with the other techniques 
because they felt it was easier to use, had finer control, and 
was natural (e.g., like turning a knob). Some noted that I/O 
Braid was especially good for micro-adjustments and 
allowed them to reach their target with finer control and 
accuracy. However, they also stated that the hyper-

sensitivity of the twist caused overshooting. Specifically, 
some participants commented that the mapping between the 
amount of twist and pixel distance was difficult to learn and 
understand. Participants were also concerned about 
accidental activation, particularly if worn on the body. 
Discussion 
Depending on the context of use, each input device offers its 
strengths and weaknesses. Findings from statistical analyses 
indicate I/O Braid to be faster than conventional buttons on 
a volume remote and surprisingly comparable to the rigorous 
standards of a laptop trackpad. 

These results are particularly remarkable given that I/O Braid 
was more sensitive and induced more motion for target 
matching tasks, compared to the rigid input devices, as 
illustrated in Figure 7. These results can be explained by 
noting that using the I/O Braid is comparable to holding a 
trackpad by its sensing surface while using it; motion was 
registered and accumulated due to the interaction of the 
surface and the supporting fingers. Filtering, as is done on 
trackpads, could reduce the amount of motion as well as help 
reduce overshooting. In fact, Figures 8b and 8c suggest that 
the I/O Braid has the most noise when the twisting motion is 
maximized, which could reflect the tension due to the 
stiffness in the cord as it is held in a highly twisted state. 
These results could potentially be used to create an adaptive 
filter that changes parameters based on how twisted the cord 
is. Even so, the results suggest that even with the most level 
of twist, participants were able to acquire and lock onto the 
target. It is remarkable that even without tuning to 
compensate for this extra motion, I/O Braid is performing so 
well compared to the other methods. That outcome may be 
due to the expressiveness of the interface; the user can 
quickly or slowly twist the cord depending on the distance 
target distance, and the actions are easy to reverse. For future 
tasks that require more accuracy, smoothing and high-pass 
filters will help improve precision. 

For more casual interactions, where exact targets are not 
necessarily the goal (such as for volume control), I/O Braid 
seems to be a viable and effective option if the targeting 
tolerance is matched to the required precision. Another 
advantage is its form factor because users can place their 
fingers on any location for actuation with little attention 
when compared to Buttons. Use of conventional button 



       
          

       
        

        
        

        
       
      

         
         

    
       

      
         

  
   

        
           

   
       

      
         

        
 
      

         
         

        
        

    
         

        
       

           
         
         

  
    

    
         

         

         
         

        
    

          
          
        

         
        

      
    

      
     

       
    

          
    

        
        

         
   

       
      

           
           

          
      
          

           
            

  

          
        

        
        

    
       

         
          

       
          
       

 
                  

                 
            

Figure 9. Augmenting continuous twist control with discrete gestures for an interactive speaker cord. Discrete actions: Tap for 
play/pause, flicks for next/previous track. Slide advances to the next playlist. Remapping: Pat toggles between volume or 
fastforward control. Continuous twist provides fine control over volume or fastforwarding. 

remote controls in earphones require users to find their 
location on the cord, and change grip for each different 
action. This method adds a high cost to pressing the wrong 
button, whereas the twisting gesture is symmetric and 
reversible. To reject false positives, we currently use a high-
pass filter based on the capacitive sensing, which limits 
activation from accidental skin contact. Further work is 
needed, however, to develop more robust mechanisms 
against accidental contact and evaluate the overall 
performance in actual contexts of use (e.g., volume control, 
dimmer switch, etc.) and over longer periods of time. 

CORD GESTURES AND INTERACTION TECHNIQUES 
I/O Braid’s ability for parallel sensing of continuous twisting 
and discrete gestures provides new building blocks for 
interactive applications that can be controlled with a single 
textile sensor. 

Continuous Control: Twist 
In this paper, we quantified the performance of continuous 
twist to confirm its suitability for fast and precise control of 
continuous parameters. 

Discrete Actions: Flick, Pinch, Grab, Pat and Slide 
The machine learning-based pipeline enables classification 
of discrete gestures, which can be triggered in parallel with 
continuous interaction, for use as shortcuts or to trigger 
commands. 

Accelerator Gesture: Flick Accelerates Twisting Effect 
The flick gesture can be performed as a complementary 
action to accelerate the effect of continuous twisting. This 
approach is analogous to touch-screen dragging and swiping 
to, e.g., transition from smooth scrolling to jumping a page. 

Remapping Input: Switching Modes 
We may wish to increase/decrease more than one continuous 
parameter. We can therefore leverage discrete gestures to 
cycle across multiple parameters to control. This mechanism 
also makes it possible to reconfigure the input mapping if we 
wish to change how we control the interface (e.g., using 
discrete instead of continuous control of a parameter). 

APPLICATIONS: E-TEXTILE MICROINTERACTIONS 
COMBINING CONTINUOUS AND DISCRETE GESTURES 
We implemented an interactive, real-time end-to-end 
pipeline in Python. The pipeline provides a UDP interface 
that expects a delineated sequence of 16 capacitance values. 

It returns a sorted list of gestures with classification 
probabilities. We trained the pipeline for a subset of our 
original gesture set, to focus on flick (CW/CCW), slide down, 
pinch and grab. A 9-fold leave-one-sample-out cross-
validation for each of the 12 participants in Experiment 3 
resulted in a 95.6% average accuracy for the subset. The 
pipeline operates in real-time and in parallel with continuous 
twist and touch tracking. We implemented a set of Java 
applications to explore how the new interaction techniques 
of continuous and discrete gestures could enable different 
expressivity for the user. 

Speaker Cord: Controlling Tracks, Volume and Rate 
We envision an interactive speaker cord, which augments an 
existing power or audio cable with interactive gestures for 
quick and casual control. 

We use pinch (or tap) for play/pause and grab/pat to toggle 
between controlling volume or playback position. 
Continuous twist thus allows us to smoothly change the 
volume or fastforward the track. A quick flick changes to the 
next/previous track, while slide advances to the next playlist. 
See Figure 9. 

Digital Magazines: Navigation with Twists and Flicks 
The Digital Magazine prototype leverages smooth 
continuous twist, analogous to a jog dial, to scroll up or down 
with varying speeds. A flick is an accelerator for page down 
or up. Similar to how touch-screen interfaces use drag and 
swipe, this interaction combines fine manipulation, rate 
control, and acceleration in a single mode. Further, the user 
can pinch the cord to toggle between a list of articles and to 
focus on a specific article. The slide gesture cycles to the next 
magazine section. 

We imagine that this interface could be used for reading on 
a mobile device while wearing headphones. It allows the 
reader to control the essentials of a reading experience 
without having to touch the display. See Figure 10. 

Game Controller with Optional Mode Switching 
Finally, we wanted to explore an experience that requires 
time sensitive interactive control, and we chose the game of 
Tetris. Here, we use two modes, which the user can alternate 
between using the grab gesture. In Twist mode, continuous 
twists move the block left/right, and pinch rotates the block. 
In the Flick mode, discrete flicks move left/right, pinch 



          
       
         

        
       

       

    
           

        
          

          
     

         
         
    

      
          
            

        
       

         
     

    
     

      
        

         
        

         
         

    
     

  

         
         

       
           

          
  

        
       
     

       
     

  

       
       

         
        
  

     
         

     
       

    
        

     
         

        
    

        
   

       
        
        

      
         

   
       

          
      

         
         

       
         

  
        

   
           
          

       
       
     

 
      

     
      

       
       

         

 
                

              
 

 

Figure 10. Interactions with a digital magazine. Continuous twist provides fine scrolling up/down. Discrete actions: Pinch to 
enter/exit article, flicks accelerate to next/previous page. Slide advances to next magazine section. 

rotates the block, and slide down drops the block. Here, we 
demonstrate two strategies that the user can toggle between 
effortlessly. The more sensitive continuous twist is faster, but 
has risks of overshooting, as discussed in our performance 
quantification experiment. The discrete flicks require more 
effort but provide more consistent control. 

LIMITATIONS AND FUTURE WORK 
Our interaction studies were conducted in a lab setting in a 
standing posture and may not match or simulate real-life 
settings while in motion or in different postures. For the data 
collection used in our machine learning, we were not able to 
accommodate formal location- and time-independent 
verification with participants, even if the authors did in fact 
train and use the system regularly across locations, over time 
and using different apparatus. 

Future studies can improve ecological validity by using the 
interface and the live gesture recognizer in a variety of 
contexts, such as on a wearable and attached to a device, to 
collect more representative data and to compare participant 
performance. The live recognizer also allows inquiry into 
how users adapt their gestures over time to improve 
recognition. Moreover, explorations into locations (e.g., 
stationary/mobile, indoor/outdoor, public spaces, in vehicle) 
and varying postures and movements can inform how the 
technique scales to everyday use where attentional 
limitations exist. Durability and practicality should be tested 
in longitudinal studies where the impact of long-term use can 
be examined and quantified. We currently use a basic 
threshold-based low pass filter to ensure that only skin 
contact can activate the cord. Future work should apply more 
advanced adaptive algorithms with time-series based 
activation signatures to increase robustness and reject false 
positives. 

While a button provides a single point and orientation of 
activation, I/O Braid can offer designers greater flexibility as 
activation can be supported from any position. Future work 
will investigate the best location and length of the I/O Braid 
as visibility and manual access may influence its design for 
a given application. 

Studies focusing on various feedback modalities (e.g., sound, 
light) can help to determine optimal scales for auditory and 
visual perception of outputs. 

Lastly, we have assumed user-dependent gesture recognition 
for the machine learning-based classifier. Future 
experiments on user-independent recognition and user-

adapted recognition, where the user provides increasing 
numbers of gesture examples to help adapt a user-
independent model to her gestures, would be helpful in 
determining how best to introduce I/O Braid to new users. 
CONCLUSIONS 
Recent work has introduced novel ways to embed touch-
sensitive electronics in textile, fabric and garments. We build 
on recent cord sensing techniques to enable hybrid 
microinteractions for casual and precise interactions using a 
minimal interactive textile. 

First, we contribute a machine learning pipeline to 
complement previous continuous twisting techniques with 
discrete flicks, pinches, pats, grabs and slide gestures. The 
gesture design was informed by proposed gestures from 36 
participants in an elicitation study. We trained user-
dependent models for 12 participants with 94% accuracy for 
eight gestures. 

Second, we contribute a quantitative targeting experiment 
that shows how continuous twisting is significantly faster 
than button-based controls and comparable in speed to state-
of-the-art non-textile trackpads. Our qualitative interviews 
indicate a preference for I/O Braid and trackpads over in-line 
remote controls. 

Third, we demonstrate how the continuous and discrete 
gestures can be combined to form new e-textile interfaces for 
discrete actions, continuous parameter control, accelerators 
and mode switching through a single textile cord that uses 
just eight electrodes for capacitive sensing. We apply these 
techniques in our implementation of an interactive speaker 
cord with music control, a digital magazine browser, and 
entertainment. 

In conclusion, I/O Braid shows a viable approach to 
simultaneously enable both precise small-scale and large-
scale motion in a compact form factor. With this work, we 
hope to advance textile user interfaces and inspire the use of 
microinteractions for future wearable interfaces and smart 
fabrics, where eyes-free access and casual, compact and 
efficient input is beneficial. 
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