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Figure 1: a) A SilentSpeller user wears the SmartPalate retainer whose 124 electrodes sense the position of the tongue at 100Hz. 
Applications include b) Hands-busy situations where speech is socially inappropriate c) users with low manual dexterity 
working in open ofce environments d) United Nations operations where silent communication is necessary 

ABSTRACT 
Voice control provides hands-free access to computing, but there 
are many situations where audible speech is not appropriate. Most 
unvoiced speech text entry systems can not be used while on-the-
go due to movement artifacts. SilentSpeller enables mobile silent 
texting using a dental retainer with capacitive touch sensors to track 
tongue movement. Users type by spelling words without voicing. In 
ofine isolated word testing on a 1164-word dictionary, SilentSpeller 
achieves an average 97% character accuracy. 97% ofine accuracy is 
also achieved on phrases recorded while walking or seated. Live text 
entry achieves up to 53 words per minute and 90% accuracy, which 
is competitive with expert text entry on mini-QWERTY keyboards 
without encumbering the hands. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Interaction devices; 
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1 MOTIVATION AND CONTRIBUTIONS 
Many conditions, such as stroke, multiple sclerosis (MS), Parkin-
son’s disease, essential tremor, amyotrophic lateral sclerosis (ALS), 
cerebral palsy, and arthritis can limit a computer user’s manual 
dexterity and necessitate alternative text entry methods. One solu-
tion is silent speech, which recognizes text entry via non-voiced 
speech. However, the hardware for current silent speech interfaces 
is often challenging, given technology that needs to be mounted 
on the body (e.g., ultrasound probes, electrodes or microphones 
attached to the neck and face) [3, 4, 8, 9]. In addition, most silent 
speech interfaces have high error rates when the user is on-the-go 
[4] and are limited to a relatively small vocabulary [3]. We present 
SilentSpeller, a device in the form of a dental retainer that tracks 
the tongue at 100 Hz using 124 capacitive touch sensors on the roof 
of the mouth (Figures 1 and 2). Instead of mouthing words, users 
spell words without voicing. Typing feedback may be displayed on 
a head worn display (HWD), smartwatch, mobile phone, or desktop 
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or each word can be spoken to the user through an earbud as it is 
recognized. While SilentSpeller is currently wired, which creates 
challenges with appearance, a wireless version could be made that 
fts completely in the mouth [5]. 

In addition to medical disabilities, situational impairments, such 
as mobility, interfere with text entry. For example, a mobile user 
may not have hands available to hold a smart phone or the visuo-
manual attention to attend the screen for gesture typing (Figure 
1b) [12]. While head-worn displays (HWD) allow a hands-free way 
to view a mobile screen, many users are reluctant to use speech 
input in public due to privacy concerns or social opprobrium. One-
handed controllers for fast, silent, and eyes-free mobile text entry, 
such as the Twiddler keyboard, require signifcant training to op-
erate at rates above hunt-and-peck desktop speeds (30 words per 
minute) [7]. Some tasks require communication in high noise or 
silent environments that preclude the use of voiced speech recogni-
tion; interviews with special operations leaders indicate a need to 
communicate silently among members of the team (Figure 1d), and 
soldiers have described a need for subtle and silent communication 
while on presence patrols. Any text messaging system should be 
hands-free, robust to body movements, and, preferably, not require 
much training to achieve fast texting rates. 

With SilentSpeller, we ofer the following contributions: 

• Optimization experiments to determine the amount of 
data needed to train a SilentSpeller recognizer per user. Two 
participants each spelled 2328 words (1164 unique words 
twice). SilentSpeller achieves an average 97% character accu-
racy (92% word accuracy) and reaches maximum accuracy 
within 1500 words of training. 

• Walking versus seated experiments that establish that 
SilentSpeller tolerates user movement during input with 
little degradation of performance. 

• An interactive text entry system that combines the spelling 
recognizers with gestures for editing. 

• Text entry experiments using the standard MacKenzie-
Soukoref phrase set where SilentSpeller users “type” up to 
53 words per minute (43 average) with 90% accuracy (88% 
average). 

2 SILENT SPELLING TEXT ENTRY 
In Silent Spelling, users silently mouth each letter in the context 
of spelling a word. An interesting advantage over mouthing words 
is that there is no ambiguity due to homophones. We use Com-
plete Speech’s SmartPalate, which is a dental retainer-type device 
with 124 binary capacitive sensors that lines the user’s palate and 
captures tongue movements (Figure 2). SmartPalate was originally 
developed for speech therapy to correct pronunciation. Data is 
sampled at 100Hz and sent to a personal computer or smart phone 
via a wired USB hub for analysis. Since the SmartPalate fts frmly 
in the top of the mouth, we expect SilentSpeller to be tolerant to 
body movements [6]. SmartPalate requires each user obtain a dental 
impression so that the electrode array can be custom ft to each 
user’s mouth (Figure 2a). Covid-19 restrictions limited the number 
of participants who could be ftted at this time. 

2.1 Recognizer Pipeline 
Principal Component Analysis is performed on training data sets 
(which are kept independent from test data). Based on empirical 
testing, we chose the top 16 components for recognition. As each 
silently spelled word is collected, each data frame of 124 binary 
electrode values is projected to the top 16 principal components. The 
resulting 100Hz 16-dimensional signal is then decoded using hidden 
Markov models. Preliminary testing suggests HMMs outperforms 
neural net-based methods for this data set. The models are frst 
trained on letters and then on triletters, akin to phone and triphones 
in conventional speech recognition systems. Tied-state triletters 
are used to reduce error for triletters with limited occurrence in the 
training data set. We choose a 12-state left-to-right HMM topology 
with no skip transitions based on early experiments. 

2.2 Corpus and Participants 
We use the Mackenzie-Soukoref phrase set, which consists of 500 
phrases, 1164 unique words, and 7048 letters [11]. Each phrase is 
about fve words long and is designed to be memorable such that 
participants can read the phrase quickly, potentially memorize it, 
and enter it as if it was their own thought. To tune the parameters 
of the system, we collect 2328 isolated words (each unique word 
twice) for two participants. P1 and P2 are both male, ages 25 and 50. 
All experiments were conducted in participants’ respective homes, 
using Apple MacBook Pro laptops. 

To collect samples of silent spelling, we developed a push-to-talk 
style recording application. The user pushes and holds the command 
button on the keyboard while spelling each word, releasing the 
button between words. If the participant makes a mistake, they 
re-record the word. Participants are allowed to take a break when 
desired. After every word is recorded, an estimate of speed (wpm) 
is displayed. The 2328 word data sets required approximately fve 
hours of input for each of the two participants. 

2.3 Ofline Isolated Word Testing (1164-word 
Dictionary) 

Using the 2328-word data sets from P1 and P2, we optimized the 
parameters of the model. In general, we average results over 10-fold 
cross-validation (i.e., independent training and test sets, random 
10% for testing each fold) for testing. We swept over two through 
18 states and discovered that 12 states provided good overall accu-
racy and still worked on the fastest articulated letters. Recognizers 
trained from the two 2328 word data sets performed exceedingly 
well, achieving 97% character accuracy and 93% word accuracy on 
P1 and 97% and 91%, respectively, on P2. 

3 TOLERANCE TO ON-THE-GO INPUT 
SilentSpeller, by its nature, can not be as fast at text entry as a 
conventional silent speech system; however, it may enable text 
entry while in motion, providing an advantage over EMG, camera, 
and ultrasound systems. The electrode array fts snugly in the 
mouth, and the tongue is relatively isolated from the mechanical 
shock of walking; otherwise, voiced speech while walking would 
not be possible. Given these attributes, we expect SilentSpeller to 
be as accurate at recognizing silently spelled words when the user 
is walking as when seated. 
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Figure 2: a) Dental impression needed for custom-ft SmartPalate. b) Resulting SmartPalate. c) Palatogram and electrode map. 
Note that individual letters are not recognized in real-time but are added to the image for illustration purposes. Time fows 
from the right so that letters are spelled in correct order and the right side of the palatogram displays the current state of the 
electrodes. 

3.1 Experiment Settings 
P1 and P2 provided 107 phrases each for both a walking and seated 
condition (a total of 428 phrases). The 107 phrases are from the 
MacKenzie-Soukoref phrase set and consist of 556 words; 321 of 
them are unique. Common words occur repeatedly in the phrases. 
For example, the most frequently used word was “a” which ap-
peared 24 times. We used the same capture system that collected 
the isolated dictionary words. Participants enter the isolated words 
in the order in which they occur in the phrases, which emulates 
entry with a live text entry system (but without the ability to see 
or edit the result). For the walking condition, participants walked 
continuously indoors while capturing the 107 phrases. The seated 
condition was captured at a desk. 

Since our goal is to compare walking versus seated text input 
we chose to use the most advantageous training that is reasonable 
for this study. For each of the two participants, the recognizer is 
trained on their 2328 isolated dictionary words plus the 107 phrases 
from the condition not being tested. In other words, the recognizer 
for the seated condition was trained with the 2328 words plus 
the 556 words from the 107 phrases collected during the walking 
condition. Similarly, the recognizer for the walking condition was 
trained with the 2328 words plus the 556 words from the 107 phrases 
collected during the seated condition. No part of any test set is 
used in training. During recognition, the system is limited to a 
dictionary constructed from the 321 unique words from the 107 
phrases. A bigram is constructed using only the 107 phrases and 
Laplace smoothing (so that any word combination is possible). 

3.2 Results and Discussion 
Table 1 presents the results of the study. There is almost no difer-
ence in the accuracy between the seated and walking conditions, 
demonstrating the robustness of SilentSpeller to body motion. 

4 LIVE TEXT ENTRY USER STUDY 
In informal experiments emulating SilentSpeller by simply spelling 
the words in the MacKenzie-Soukoref phrase set as fast as possi-
ble, we found text entry surpassed 50 wpm, which is equivalent 

participant-condition character (word) accuracy 
1-seated 97% (95%) 
1-walking 97% (95%) 
2-seated 94% (90%) 
2-walking 93% (91%) 

Table 1: Comparing walking to seated text input. 

to the expert text entry rates on physical [2] and virtual [10] mini-
QWERTY keyboards. While accuracy varies between the partici-
pants in the experiments above, the results show that SilentSpeller 
holds promise as a means of text entry. Adding an interface so 
that the user can select between the top n-best candidates returned 
by the recognizer should improve the speed and usefulness of the 
interface. 

4.1 Participants and corpus 
The same two participants performed the live text entry user study. 
The recognizer was trained with the 556 words from the 107 phrases 
collected while seated for each participant plus 500 words were 
chosen at random from the 2328 isolated words (this method was 
chosen for compatibility with an on-going study with more par-
ticipants). For testing, the participants attempted to input the 107 
phrases again, as quickly and as accurately as possible. 

We employ a bigram stochastic grammar trained on the 107 
phrases with Laplace smoothing. Upon inference, HTK returns a 20-
best list of candidates with their likelihoods. Applying the bigram 
to this list determines the top candidates. 

4.2 Text Entry using SilentSpeller 
Following previous work [1, 7, 11], we implemented an interface 
application to test the speed and accuracy of text entry using 
SilentSpeller on the MacKenzie-Soukoref phrase set. We provided 
a video to instruct participants in how to use the interface. The 
application presents phrases to the participant who then transcribes 
them over the course of 20 minutes. Using the SilentSpeller app is 
similar to using a gesture keyboard [12], included on most smart-
phones. Three interactions are provided: INPUT (silent spelling), 
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Figure 3: Live text entry results. Words per minute (left) and accuracy (right) for each of the participants’ three sessions. Solid 
lines shows the results using SilentSpeller. Dotted lines shows the results using usual mini-QWERTY keyboard. 

N-BEST-SELECT/TAP (produced by touching the front of the palate 
for more than 0.3 seconds and less than 1 second), and ERASE-
WORD/STICK (pressing the tongue frmly on the entire palate 
between 0.3-1.0 seconds). For each phrase, the user presses a push-
to-record button and inputs an individual word by silently spelling 
with the SmartPalate. Upon button release, the captured data frames 
are sent to the recognizer. About a second later, the interface shows 
the user a list of the fve best word predictions in order of proba-
bility. If the frst best candidate is correct, it is accepted as soon as 
the next input is started. If the correct answer is in the list of fve, 
the user selects the best candidate with the TAP gesture. If there is 
no correct answer among the fve, the candidates are deleted with 
the STICK gesture and the system returns to the input state. Once 
the user has completed a phrase, the user presses the right shift to 
advance to the next phrase. 

4.3 Results 
Figure 3 shows the results of the live text entry experiment. Partici-
pants did the same experiments using the mini-QWERTY keyboard 
on their smartphones for comparison. First, it was shown that for 
both participants, text entry by SilentSpeller was faster than by 
mini-QWERTY. The average maximum session speed over each 
participant’s three sessions was 48 wpm. Average text entry accu-
racy (1 - TER) for those respective sessions was 92%. Unlike the 
previous ofine experiments, this accuracy metric considered user 
failures in typing the correct letter, recognizer failures, and correc-
tions. As expected, participants quickly adapted to silently spelling 
words for text entry. P2 discovered that his recognizer was good 
enough that he rarely waited to see the result of the output before 
continuing to the next word. This strategy resulted in a maximum 
53 wpm speed while still maintaining 90% accuracy. When asked 
about his experience, P2 reported a sense of “fow” when the recog-
nizer was working well which allowed him to keep a rhythm to the 
text input. This success suggests more investment in improving the 
recognition rates may cause the other participants to reach similar 
speeds. At the end of the experiment, P1 and P2 attempted another 
20 minute live text entry session while walking and saw similar 
results to their seated performance, as expected. 

5 CONCLUSION 
We present SilentSpeller, an interface for text entry using unvoiced 
spelling of words. We evaluate SilentSpeller’s recognition system 
on a dictionary of 1164 isolated words resulting in average 97% char-
acter accuracy. In another test, text entry speeds and accuracies 
were relatively unafected by the user walking during input. Live 
text entry experiments demonstrate texting rates competitive with 
mobile phone virtual QWERTY typing, but without encumbering 
the hands. These results suggest SilentSpeller can be an efcient 
text entry system and may fnd niche applications for on-the-go, 
silent, hands-free text entry or silent text entry for people with 
movement impairments. Further work will explore specifc appli-
cation domains, additional sensors for the lips to tune recognition 
accuracy, and user independent and user adaptive recognition. 
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