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Figure 1: a) A SilentSpeller user wears the SmartPalate retainer whose 124 electrodes sense the position of the tongue at 100 Hz. 
Applications include b) hands-busy situations where speech is socially inappropriate and c) users with low manual dexterity 
working in an open ofce. 

ABSTRACT 
Speech is inappropriate in many situations, limiting when voice 
control can be used. Most unvoiced speech text entry systems can 
not be used while on-the-go due to movement artifacts. Using a 
dental retainer with capacitive touch sensors, SilentSpeller tracks 
tongue movement, enabling users to type by spelling words without 
voicing. SilentSpeller achieves an average 97% character accuracy 
in ofine isolated word testing on a 1164-word dictionary. Walking 
has little efect on accuracy; average ofine character accuracy was 
roughly equivalent on 107 phrases entered while walking (97.5%) 
or seated (96.5%). To demonstrate extensibility, the system was 
tested on 100 unseen words, leading to an average 94% accuracy. 
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Live text entry speeds for seven participants averaged 37 words 
per minute at 87% accuracy. Comparing silent spelling to current 
practice suggests that SilentSpeller may be a viable alternative for 
silent mobile text entry. 
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Figure 2: a) Dental impression needed for custom-ft SmartPalate, b) resulting SmartPalate, and c) Palatogram and electrode 
map. Note that individual letters are not recognized in real-time but are added to the image for illustration purposes. 

1 INTRODUCTION 
The following real-life scenario, articulated to one of the authors 
while consulting, initially motivated SilentSpeller: 

Kim is a project manager for a large software company that main-
tains an open ofce plan (i.e., many workers in the same room with 
adjacent desks). Kim enjoys the camaraderie, and her team ensures 
that the aisles are clear so she can navigate her power wheelchair to 
her desk in the middle of the team (Figure 1c). Unfortunately, Kim’s 
muscular dystrophy has weakened her hands so that she can no longer 
type her emails and documents. Speech recognition could help, but it 
would distract her colleagues at neighboring desks and raise privacy 
and security concerns given her managerial role. Kim is now searching 
for a text entry method which will maintain her efcacy and allow 
her to sit with her team. 

Conditions such as amyotrophic lateral sclerosis (ALS), cerebral 
palsy, stroke, multiple sclerosis (MS), Parkinson’s disease, essential 
tremor, and arthritis can limit a computer user’s manual dexterity. 
Silent speech, which recognizes text entry via non-voiced speech, 
ofers an alternative. Silent speech is able to ofer the convenience 
and learnability of a speech interface while maintaining confden-
tiality. However, silent speech recognition is a very difcult task 
[11] that is often limited to a vocabulary of around 100 words and 
requires the user to be stationary [10, 20, 23, 27, 30, 36, 38, 40, 53, 58]. 
In addition, none of the silent speech systems in the literature have 
been tested for use in live input using a standard text entry corpus. 
Most papers only report results from ofine experiments, which 
can lead to overly optimistic results due to overftting. The few 
systems that report live results are designed to recognize command 
phrases or words and do not allow arbitrary composition of the 
words in the dictionary as is required for live text entry. 

We introduce silent spelling as an alternative for silent speech 
interaction (SSI). In silent spelling, the user spells words without 
voicing (i.e., instead of saying them audibly). This technique is more 
easily recognized than silent speech, allowing larger vocabularies 
(1164 words in this work) and on-the-go interaction. Although 
spelling is slower than speech, we show that the speed is still com-
parable to virtual mini-QWERTY text entry on smartphones. We 
choose to compare to text entry on smartphones, as users have 

clearly accepted it as sufciently fast to communicate in many situ-
ations [43]. It is worth noting that spelling requires less training 
than other text entry methods for fast, silent, and gaze-free mobile 
text entry. Unlike other systems [33, 35, 59], silent spelling is fast 
to learn; SilentSpeller users achieve 30 wpm in their frst 20-minute 
session using the interface. 

SilentSpeller detects spelling using a device in the form factor 
of a dental retainer that tracks the tongue at 100 Hz using 124 
capacitive touch sensors on the roof of the mouth (Figures 1a and 
2). The sensor is very robust to motion artifacts, enabling on-the-
go scenarios. We compare text entry accuracy while seated and 
walking; the results are almost the same. This property allows 
applications for silent speech systems beyond the desktop. 

1.1 Contributions 
We ofer the following contributions: 

• A Wizard of Oz study comparing silent spelling to smart-
phone mini-QWERTY texting and silent speech in terms 
of words per minute and workload (NASA TLX). Results 
suggest silent spelling, in the ideal situation, may be a viable 
text entry alternative. 

• Optimization experiments determining the amount of 
training data needed for a user dependent SilentSpeller rec-
ognizer. 2328 words (1164 unique words twice) were spelled 
by two participants. SilentSpeller reaches a maximum av-
erage 97% character accuracy (93% word accuracy) within 
1500 words of training. 

• Isolated word experiments to test the generalizability of 
SilentSpeller to unseen vocabulary. We remove 100 words 
(200 examples) from the training data set to attempt recogni-
tion on unseen words. SilentSpeller achieves an average of 
94% accuracy (86% word). 

• Walking versus seated experiments establish that SilentSpeller 
is tolerant to user movement during input with little degra-
dation of performance (97.5% character accuracy walking, 
96.5% seated). 

• An interactive text entry system that combines the spelling 
recognizers with gestures for editing. 
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Table 1: Experiments conducted 

No. Purpose Partic. Words Collected Dictionary Testing Result 

Pilot Wizard of Oz experiment 
on speed & usability 

6 N/A N/A N/A Figure 6 

1 
Recognition feasibility 
and optimizing models 2 2328 1164 10-fold cross-validation 

Table 3 
Figure 11 

2 Recognition on unseen words 2 2328 1164 
test on 100 random words 
(200 examples) left out Table 4 

3 
Determining robustness to 
to motion artifacts 2 2328 + 556x2 321 

training on 2328 plus 556 words 
walking or seating; test on other Table 5 

4 
Examining performance 
as a text entry system 

7 500 + 556 321 Live text entry Table 6 

• Live text entry experiments comparing SilentSpeller to 
standard smartphone virtual QWERTY text entry using the 
standard MacKenzie-Soukoref phrase set. 

• A public database of SilentSpeller input that includes 37,633 
letters in 6325 words produced by seven users. 

Table 1 summarizes the experiments presented. 

2 RELATED WORK 
Computing interaction has historically revolved around inputting 
text into a computing system for storage (i.e., taking notes) and 
action (i.e., running commands), and much previous research has 
focused on text entry [35]. While the QWERTY keyboard remains 
the primary modality, the transition from mechanical keyboards 
for desktop computing to touchscreen smartphones has caused a 
resurgence in interest in alternative text entry techniques for on-
the-go scenarios. In addition, people with disabilities often seek 
appropriate alternative and augmentative communication (AAC) 
aids as text entry requires manual dexterity and visual attention 
they may not be able to sustain. While there is extensive literature 
on these subjects [35], here we restrict our review of text entry 
in these domains to points that illustrate important concepts with 
SilentSpeller. 

2.1 Silent text entry techniques for users with 
low dexterity 

Edgewrite [64] is an excellent example of modifying a text entry 
method to address the needs of people with low dexterity (see Wob-
brock et al. for more examples [67]). Like Unistroke and Grafti [5], 
Edgewrite establishes a simplifed and consistent writing method 
for pen-based text input. However, Edgewrite characters are drawn 
simply by going from one corner to another in a square. This at-
tribute allows Edgewrite to be adapted for input by a trackball or 
joystick for users who have tremor or fail hands. However, speeds 
for the target users tend to be under 20 wpm [64]. Several research 
projects have explored using the tongue for controlling interfaces 
[4, 41, 42], which, while slow, could be used for text input. Other 
research has explored the use of gaze and brain waves as proxies for 
input. Gaze-based keyboards often involve tracking the eyes as they 
look at diferent keys on a visual keyboard and defning a selection 
gesture such as blinking for “tapping” that key [37, 52]. Similarly, 
most electroencephalogram (EEG) spellers rely on the electrical 
signals emanating from the brain as a result of visual stimuli to 

determine the key being selected [1]. Non-invasive gaze and brain 
computer interfaces (BCI) rarely exceed 20 wpm [6, 39, 60, 69] and 
are highly susceptible to body movements. 

2.2 Mobile text entry techniques 
Palin et al. [43] report mini-QWERTY typing methods (gesture, 
two-thumbs, completion, autocorrect, etc.) and speeds (average 
36wpm) on smartphones given the contributions of 37,000 volun-
teers. Clawson et al. report mini-QWERTY expert rates of 57 wpm 
and 95% character accuracy when seated and 53 wpm and 94% when 
walking [9]. Seated mini-QWERTY typists that could not see the 
keyboard or the characters they typed averaged 53 wpm and 91% 
accuracy [8]. Ruan et al. [49] report expert iPhone mini-QWERTY 
virtual keyboard users can sustain 52 wpm with 95% accuracy while 
seated, and using English speech for text entry averages 153 wpm 
with 96% accuracy. These studies use variants of the MacKenzie-
Soukoref text entry phrase set [34] and metrics [35, 65] used in 
our experiments. Many other mobile text entry systems exist, such 
as gesture-based keyboards [68, 72], specialty devices [33, 59], or 
soft keyboards that use alternative sensors in smartphones [17, 18]. 
However, these methods often require signifcant learning or fo-
cused visuomanual attention that SilentSpeller seeks to avoid. 

2.3 Silent Speech 
Silent speech interfaces circumvent normal acoustic sensing by mea-
suring other parts of the speech production pipeline, including phys-
ical vibrations of the vocal cords, movements of the jaw and tongue, 
and byproducts of speech production, such as muscle-activation 
electrical signals or non-audible acoustics [11, 14, 15, 22, 40]. Such 
interfaces can enable speech signal amplifcation as well as speech 
recognition. Measuring the surface electromyography (sEMG) sig-
nals created by muscle activation has been used to detect neck, jaw, 
and cheek movements [27, 36, 38, 53]. Optical and magnetic sensors 
have been used to track movements of the jaw, face, head and tongue 
[2, 3, 12, 19]. Ultrasound intraoral images have also been used for 
silent speech recognition or speech synthesis [10, 20, 23, 24, 30, 58]. 

While Kapur et al.’s AlterEgo sEMG-based silent speech recog-
nizer [27] was originally tested for subtle stationary input, a recent 
extension tests three users with movement impairments and dys-
phonia due to MS [28]. Participants with dysphonia have wildly 
varying speech patterns such that user-dependent training is often 
required for any speech-based system. Unfortunately, these partici-
pants are easily tired giving example data. Collecting 10 repetitions 
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Table 2: Silent Speech Research (expanded from Li et al. [32]) 

Interface Modality Proxy Dictionary Accuracy Entry Subtle Walking? Unseen 
(char/word/phr) Rate Form Factor? Vocabulary? 

Bedri 2015 [2] Optical & Mag. Jaw and tongue 11 phrases P90% 
Kapur 2018 [27] sEMG Jaw and cheek 10 words W92% 
Meltzner 2018 [38] sEMG Face and neck 65 words W90% 
Sun 2018 [56] Camera Lip Movement 44 phrases P95% 
Fukumoto 2018 [15] Audio Ingressive speech 85 phrases P98% 
Li 2019 [32] Capacitive Tongue 15 words W97% 
Wang 2019 [62] RFID Tongue and face 100 words W86% 
Kimura 2019 [30] Ultrasound Jaw and tongue 15 words N/A 
Gao 2020 [16] Acoustic Lip movement 45 words W91% 
Stone 2020 [55] EOS Tongue & lip 30 words W97% 
Zhang 2021 [74] Acoustic Lip Movement 90 phrases P91% 
Pandey 2021 [44] Camera Lip Movement 105 words W97% 
SilentSpeller Of. Capacitive Tongue 1164 words W92% 
SilentSpeller Live Capacitive Tongue 321 words C87% 

of 15 sentences (660 words total in 30-40 minutes) from each par-
ticipant, AlterEgo achieved 81% accuracy distinguishing one out of 
15 phrases with 5-fold cross-validation. With further development, 
such a system might allow users to control home automation or 
send predefned messages to friends or caretakers. Unfortunately, 
EMG-based systems require precise placement of electrodes, mak-
ing them difcult to don and dof. These systems are also sensitive 
to movement artifacts. However, this work highlights that a rec-
ognizer that can be quickly trained, even if to distinguish a low 
number of classes, might be of beneft to these populations. With 
SilentSpeller, we seek to create a system that is similarly fast 
to train, easy to don and dof and wear for extended times, 
is tolerant of movement artifacts, and enables large vocabu-
lary interaction with high accuracy. 

We are not the frst to evaluate the potential of electropalatogra-
phy (EPG) for silent speech [21]. After preliminary work in 2016, 
Stone and Birkholz [55] recently demonstrated 97% user depen-
dent accuracy across four users on a 30-word command vocabulary 
using electro-optical stomatography (EOS), a combination of elec-
trical contact sensors to measure the palato-lingual contact pattern 
and optical sensors to measure the distance between the tongue 
and palate and the lip opening and protrusion. User independent 
recognition averaged 56%. Li et al.’s TongueBoard [32] reported a 
live user dependent study on a vocabulary consisting of 15 common 
words, and achieves an average information transfer rate of 3.78 bits 
per decision (number of choices = 17, accuracy = 97.1%). Tongue-
Board’s vocabulary was focused on the numerical digits and fve 
operators such that the system’s phrases were limited to calculator 
operations, and the system was not appropriate for general text 
entry. However, the study demonstrated the robustness of EPG to 
motion artifacts. Inspired by this work, we attempted recognizing 
the 26 letters of the alphabet with one user and confrmed that ac-
curacies over 90% can be achieved. Encouraged by this initial result, 
we hypothesized that combining silent spelling with continuous 
speech recognition methods would result in a text entry system 
with a large vocabulary that was still fast enough to be useful. In 
comparison to Stone and Birkholz’s study, we evaluate live text 
entry speed and accuracy, demonstrate robustness to motion arti-
facts, achieve a vocabulary size of over 1000 words, and evaluate 
the system’s ability to recognize unseen words. 

Live, N/A Google Glass and earpiece No Trained only 
Live, N/A visible electrodes No Trained only 
Ofine visible electrodes No Yes 
38wpm smartphone No Trained only 
Live, N/A smartphone or ring No Yes 
2.2bpm in mouth, wired Yes Trained only 
Ofine visible stickers Potentially Trained only 
Ofine ultrasound probe under jaw No Trained only 
Ofine smartphone No Trained only 
Ofine in mouth (voiced) No Trained only 
Live, N/A smartphone No Yes 
Of:6.4wpm smartphone No Yes 
Ofline in mouth, wireless proto. Yes Yes 
37wpm in mouth, wireless proto. Yes Yes 

Meltzner et al.’s work with sEMG-based silent speech recognition 
[38] demonstrated up to 90% user-dependent ofine isolated word 
accuracy on a 65 word dictionary using a hidden Markov model 
(HMM) based approach. Extensions explored recognizing phrases 
of silent speech using strict grammars and using a phonetic version 
of the system to recognize unseen words. SilentSpeller follows a 
similar development approach but, unlike Meltzner’s system, is 
tolerant of body movement; can be quickly donned (as opposed 
to careful pasting of electrodes on the neck and jaw); is tested on 
live text entry (as opposed to completely of-line testing); and can 
be designed to be contained completely in the mouth. In addition, 
training data for SilentSpeller was collected in multiple sessions 
over days or months before the live text entry system was tested, 
demonstrating that the sensing system is stable and consistent over 
time. 

LipType [44] is a computer vision system that reads the lips 
of the user. Ofine results are reported on 30 MacKenzie phrases 
containing 105 unique words (compared to SilentSpeller’s live text 
entry with 107 MacKenzie phrases with 321 unique words). LipType 
is less practical (and not tested) for on-the-go use and is restricted 
to 6.4 WPM due to computational costs. SoundLip [74] is an of-
fine recognizer for 20 Chinese word commands and 70 sentence 
commands. We highlight the diference between SilentSpeller and 
previous work in Table 2. As seen in the table, few systems can 
generalize to unseen words; they must include examples in their 
training set. Accuracies are based on the units reported in the litera-
ture (characters, words or phrases). When available, text entry rates 
are included. Not included in the table is our CHI2021 Interactivity 
demonstration which used pilot results from this research from two 
participants [29]. 

3 SILENTSPELLER 
We propose silent spelling as a practical alternative to silent speech. 
In silent spelling, instead of mouthing words, the user spells each 
letter in the words, one by one. For example, instead of saying 
“rapidly” (ra·puhd·lee), the user spells each letter “a:r ei pi: di: el wai” 
(Figure 3). Silent spelling increases the amount of signal available 
per word for recognition. It is also compositionable in that words 
that were never seen in training might still be recognized. Subparts 
of the word, such as three letter (triletter) blocks, might be com-
bined to recognize unseen words. In this manner, large vocabulary 
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recognition might be possible with relatively little user training. 
Silent spelling also enables distinguishing between homophonic 
heterographs such as “I,” “aye,” and “eye” or “right,” “write,” and 
“wright.” However, in order to be valuable, silent spelling should 
provide some advantage over the current dominant mobile silent 
text entry method, mini-QWERTY virtual touchscreen keyboards. 

Figure 3: Visualization of samples when spelling and saying 
“that rapidly.” Silent spelling increases the amount of signal 
available per word for recognition. 

3.1 Pilot Experiment: Silent Spelling versus 
Smartphone Mini-QWERTY 

One concern with silent spelling is speed, because each word is 
spelled one character at a time. We conducted Wizard of Oz experi-
ments emulating ideal text entry to see if silent spelling provides 
acceptable speed and ease-of-use before actually building a system. 
Following previous work [7, 33, 54], we implemented a traditional 
interface application to test the speed of text entry (Figure 4). The 
application presents phrases to the participant who then transcribes 
them over the course of 10 minutes. The user presses the command 
button on the test computer while silently spelling or speaking (i.e., 
a push-to-talk interface). Since it is a Wizard of Oz experiment, 
the system does not actually have a recognition pipeline, and the 
correct word is always displayed in response to the user’s input. 

We prepared three conditions for comparison: silent speech in-
put, silent spelling input, and the mini-QWERTY keyboard on the 
Apple iPhone. Here, when we use the term mini-QWERTY, we are 
referring to the small virtual touchscreen rendering of the desktop 
QWERTY keyboard typically used for text input on smartphones. 
The comparison with mini-QWERTY is important because one of 
the powerful aspects of our system is its mobile use. Mini-QWERTY, 
used in a myriad of diferent implementations, is the dominant form 

Figure 4: The interface application used in the Wizard of 
Oz experiment. User transcribes the presented texts and the 
“recognized” words appear below. 

of text entry on mobile devices and is well studied in the litera-
ture [9, 13, 50]. We hoped that the results would show that silent 
spelling, while not as fast as silent speech, could compete with 
mini-QWERTY. If the speed and ease of use are comparable to mini-
QWERTY, then we presume silent spelling may be a viable text 
entry method, at least for the ideal case (of no additional hardware 
and perfect recognition), and has the beneft of being hands-free. 

For evaluating ease of use, we choose the NASA Task Load Index 
(TLX) as a metric. As a measure of speed, we use words per minute 
(WPM) using the formulas presented by Mackenzie, where T is the 
length of the transcribed text, and S is the time it takes to enter 
the entire phrase in seconds [35]. Since S is measured from the 
frst keystroke to the last for the phrase, the number of letters is 
reduced by one. The constant 60 is used as the number of seconds 
in a minute, 1/5 is adopted because the average length of a word 
(including spaces) is 5. 

T − 1 1 
WPM = · 60 · (1)

S 5 

3.1.1 Procedure. Six participants (fve male, one female, ages 23-
34, and four out of six were iPhone users) were frst briefed about 
the experiment and each item of NASA-TLX. For the experiments 
using mini-QWERTY, all participants used the same Apple iPhoneX. 
After each experiment, the participants answered the NASA-TLX 
questions. After all the experiments were done, an interview was 
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Figure 5: Wizard of Oz study. a) Word per minute rates for each input method. b) The NASA-TLX results averaged across users. 

held to ask about the whole experiment. The order of the three 
conditions followed a balanced Latin square design. 

3.1.2 Wizard of Oz Results. Figure 5a shows the words per minute 
(WPM) for each input method. A one-way within-subjects ANOVA 
shows a signifcant diference between the conditions (F(2, 10) = 
32.4; p < 0.001). Post-hoc tests using Bonferroni correction for 
multiple hypotheses shows a diference between the silent speech 
and silent spelling conditions (p = 0.007; 95% CI [29.3, 124]) and 
the silent speech and mini-QWERTY conditions (p=0.006; 95% CI 
[31.2,126]). As we expected, silent speech was by far the fastest, with 
an average of 115 wpm, while silent spelling and mini-QWERTY 
were similar, with averages of 38.7 and 36.6, respectively. The 95% 
confdence interval for the diference in means results in spelling 
being between 7.54 wpm slower and 11.79 wpm faster than mini-
QWERTY. 

The NASA-TLX subscale results and the weighted overall work-
load are shown in Figure 5b. A one-way within subjects ANOVA 
shows a signifcant diference between the overall weighted work-
load scores (F(2, 10) = 25.9; p = 0.022). Post-hoc tests using Bonfer-
roni correction for multiple hypotheses shows a diference between 
the silent spelling and the silent speech conditions (p = 0.002; 95% 
CI [8.24,23.32]). The diference in means between spelling and mini-
QWERTY did not reach the level of signifcance for the overall 
weighted workload. The 95% confdence interval for the diference 
in means between spelling and mini-QWERTY is between -21.35 
and 17.42 (out of a maximum diference of 100). 

As expected, the workload for silent speech is lowest, as can be 
seen in Figure 5b. However, visualizing the results in this manner 
is misleading as there is large variability between users in how 
they scale the TLX. Instead, it is more informative to show the 
mean diferences in component and weighted overall scores per 
user between conditions (see Figure 6). While the comparisons are 
post hoc, examining these graphs can inform future research and 
potential improvements. As expected, Figure 6a shows that silent 
speech is favored over silent spelling in almost all categories. Inter-
estingly, the same trend can be seen comparing silent speech versus 
mini-QWERTY (Figure 6c), which, combined with the increase in 

text entry speed, suggests that silent speech interfaces may, indeed, 
fnd favor with users. 

Figure 6b shows the diference between silent spelling and mini-
QWERTY. Of note is the efort subscale. In their comments, several 
participants mentioned that the efort of breaking the word into 
letters was high, as the word would unconsciously come out of their 
mouths before they could break it into letters. While, anecdotally, 
performance seemed to improve during the 10-minute session, per-
haps one improvement to reducing the efort of silent spelling is to 
add recognition for some common words that are easily distinguish-
able and are routine “slips” while spelling. Another improvement 
may be to add recognition of proper names tailored for each user. 
This hybrid approach may point to a method of gradual improve-
ment of the silent spelling system toward silent speech. 

It should be noted that all participants are daily users of mini-
QWERTY text entry, but they were using silent spelling for the 
frst time. The results suggest potential for silent spelling having an 
acceptable learning curve and could provide usable text entry speed 
for the workload compared to current practice. These attributes are 
promising for user acceptance, which encouraged us to develop a 
working prototype of SilentSpeller. 

3.2 SmartPalate 
SmartPalate is a dental retainer-type device with 124 binary capaci-
tive sensors that line the user’s palate and capture tongue move-
ments (Figure 2b). Complete Speech originally developed Smart-
Palate for speech therapy to correct pronunciation. Data is sampled 
at 100 Hz and sent via a fex circuit ribbon cable to a data module 
external to the mouth. This module converts the signal to standard 
USB signals and transmits the data to a personal computer or smart-
phone via a USB cable. We expect SilentSpeller to be tolerant of 
body movements [32] as it fts frmly in the top of the mouth. Each 
user must obtain a dental impression so that the electrode array can 
be custom ft to each user’s mouth (Figure 2a). Due to Covid-19, the 
number of participants who could be ftted at this time was limited. 

https://8.24,23.32
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Figure 6: NASA-TLX results showing the diference between a) silent speech versus silent spelling b) silent spelling versus 
mini-QWERTY and c) silent speech versus mini-QWERTY. Negative values mean that the second input method has a worse 
rating. White numbers on box plots are median values. 

3.3 Recognizer Pipeline 
Silent speech and silent spelling share many of the same attributes 
for recognition. Silent speech often relies on recognizing approxi-
mately 44 phonemes in the context of words [11, 27, 38]. Accuracy 
is given at the word level as silent speech recognizers can lever-
age co-articulation efects in context to improve rates. Similarly, 
SilentSpeller focuses on recognizing the 26 letters of the alphabet, 
silently mouthed in the context of spelling a word. Following the 
path of early voiced and unvoiced speech recognition development 
[26, 38], we start with recognition on isolated word dictionaries 
and gradually increase complexity, transitioning to phrase input 
and more difcult usage environments. 

Training SilentSpeller recognizers follows a consistent training 
and testing process, detailed here. Principal component analysis 
is performed on training data sets (which are kept independent 
from test data). Based on the results of tuning experiments (see the 
tuning results of Section 4 and Figure 11), we choose the top 16 
components (“eigen-palates”) for use in our recognition pipeline 
as the best compromise between accuracy and processing speed. 
Eigen-palates are never trained with test data. 

Figure 7 shows an example of the components extracted for one 
of P1’s tests. Reducing the number of features from 124 to 16 (by 
100 times/sec) signifcantly improves the speed of the real-time 
recognizer. Another potential use of these components is to reduce 
the complexity of the hardware. Unused or redundant electrodes can 
be removed. Alternatively, fewer and larger electrodes that better 
match the shape of the components may be used. For a wireless 
system, this reduction in electrodes reduces the amount of data 
that needs to be transmitted, resulting in a more stable and power 
efcient system. While the higher order eigen-palate components 
can be quite complex, the frst few show human understandable 
features. For example, component 1 mostly represents when the 

mouth is open and the tongue is fattened against the back of the 
palate as when saying the letter E. Component 2 shows the tongue 
in front of the mouth as when saying the letter T. Component 3 is 
representative of the frst part of saying the letter J. 

When each silently spelled word is collected, each data frame 
of 124 binary electrode values is projected to the top 16 principal 
components. Figure 8 shows a visualization of silently spelled data 
for the English alphabet. In the raw data visualization, plots on the 
upper area represent activity from the front area of the tongue. For 
example, in "L" and "T", where the tip of the tongue touches the 
palate when starting spelling, the area around 0 to 20 is activated. 

The resulting 100 Hz 16-dimensional signal is then decoded 
using hidden Markov models (Figure 9). HMMs are well suited for 
this task because they have shown high performance in time series 
pattern recognition in early voiced and unvoiced speech recognition 

Figure 7: Examples of the top 16 "eigen-palates" (eigenvec-
tors visualized on the SmartPalate’s electrodes) extracted us-
ing principal component analysis from one fold of P1’s 2328 
isolated word training data. Dark red are high values; dark 
blue values are low. 
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Figure 8: Palatogram of Participant 1 reciting the alphabet. 
The upper RAW visualizations show the 124 binary elec-
trode values. The lower ones represent projection on the 
top 16 principal components. Some similar sounding letters, 
such as B/P and D/T/Z, have similar palatograms. Others, 
such as J/K, are distinct at some point during production. 
Longer palatograms for some letters (T/V) are the result of 
the user not fully opening the mouth after production such 
that the tongue remains in contact with the palate, which 
can lead to co-articulation efects. 

[38, 46]. In addition, HMMs often require less training data than 
neural net techniques such as LSTMs and Transformers [51, 61]. 
Preliminary testing suggests HMMs outperform other methods 
for this data set. The Georgia Tech Gesture Toolkit (GT2K) [63], a 
wrapper around the HTK Speech Recognition Toolkit [71], is used 
for training and testing the HMMs. Training is provided in the 
form of words, not individual letters, so that co-articulation can be 
modeled. Initially, the word is artifcially segmented into sections 
equal in number to the letters in the word. Viterbi alignment and 
Baum-Welch re-estimation refne these boundaries to converge on 
better boundaries for each letter. First the 26 letters are trained, 
progressing to triletters, akin to training phones and triphones in 
conventional speech recognition systems. For triletters with limited 
occurrence in the training dataset, tied-state triletters are used to 
reduce error. Based on early experiments, we choose a 12-state, left-
to-right HMM topology with no skip transitions. The recognizer 
pipeline and the dataset are available on GitHub1. 

4 EXPERIMENT 1: ESTABLISHING 
FEASIBILITY AND TUNING MODELS 

To determine the feasibility of an unvoiced spelling input system 
for mobile, on-the-go, silent, and hands-free text entry, we perform 
a series of experiments culminating in a live text entry experiment. 
For practical purposes, we collect words instead of simply the 26 
letters of the alphabet. Just as co-articulation afects the pronuncia-
tion of phonemes when spoken in a word, letters spoken together 
afect each other. This efect is especially true when communicat-
ing quickly, and, in our experience, users who spell for text entry 
tend to spell quickly, even eliding (skipping) some letters in longer 
words. To be efective, SilentSpeller needs to recognize such words, 
even when users are not being precise. 

1https://github.com/supernaiter/SilentSpeller 

4.1 Text entry corpus and participants 
To tune the parameters of the system, we collect 2328 isolated 
words (each unique word twice) for two participants. P1 and P2 are 
both male, ages 25 and 50. We use the Mackenzie-Soukoref phrase 
set, which consists of 500 phrases, 1164 unique words, and 7048 
letters [54]. Each phrase is about 28 characters words long and is 
designed to be memorable such that participants can read the phrase 
quickly, potentially memorize it, and enter it as if it was their own 
thought. While the corpus does not contain any special characters, 
punctuation, or capitalization, it has become a standard in the 
literature as it models the short and informal communication that 
has become commonplace in SMS and social media applications. It is 
also a reasonable surrogate for the short communication associated 
with alternative and augmentative communication (AAC) aids. 

4.2 Isolated word capture system 
We developed a push-to-talk style recording application (Figure 
10) to collect samples of silent spelling. The user pushes and holds 
the command button on the keyboard while spelling each word, 
releasing the button between words. If the participant makes a 
mistake, they are required to re-record the word, but no real-time 
checks are provided. Participants are allowed to take a break when 
desired. An estimate of speed (wpm) is displayed after every word 
is recorded. Participants are asked to spell at a rate exceeding 30 
wpm to imitate test conditions. The 2328-word data sets required 
approximately fve hours of input for each of the two participants. 
Data from this experiment and all experiments in this paper can be 
found at the linked page in the footnote. 

4.3 Tuning User Dependent Recognizers 
Using the 2328-word data sets from P1 and P2, we use 10-fold 
cross-validation (i.e., independent training and test sets, random 
10% for testing each fold) for each test. To be clear, we are creating 
user dependent recognizers where only one participant’s data is 
used for training and testing at a time. Table 3 summarizes the 
top results in our experiments with HMMs and Transformers. The 
HMM-based recognizers performed exceedingly well, with an av-
erage 97% character accuracy and 92% word accuracy. Character 
accuracies are provided in context and will be higher than word 
accuracies. In other words, the recognizers attempt to select a word 
from the dictionary that best matches the silent utterance. While 
a word could be wrong, most of the letters could be correct (e.g., 
“cause” instead of “cars”). While deep learning techniques such as 
Transformers have recently shown much success in language tasks 
[25, 61], performance here was poor, suggesting that signifcantly 
more data would be required to train the neural net models. Given 
that we are trying to create user-dependent recognizers without re-
quiring an onerous amount of training data, we decided to continue 
with an HMM-based approach. Future work will investigate data 
augmentation methods, such as SpecAugment [45], to supplement 
both approaches. 

We wish to optimize HMM parameters on P1 and P2 before test-
ing on P3-P5. We swept over two through 18 states and discovered 
that 12 states provided good overall accuracy and still worked on 
the most quickly articulated letters. Figure 11 shows the results 
of additional parameter tuning. While Figure 11 shows the results 

https://github.com/supernaiter/SilentSpeller
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Figure 9: SilentSpeller’s recognition pipeline. Captured data from SmartPalate is extracted using principal component analysis. 
The sequence of extracted features is sent to a hidden Markov model-based recognizer to be decoded into words. 

Figure 10: Isolated word recording system. The text interface (left) prompts the user and allows examples to be discarded and 
redone. The visualizer (right) provides a live trace of which of the 124 electrodes are activated, scrolling right to left. 

Participant 1 2 
Character (word) accuracy HMM 
Character (word) accuracy Transformer 

97% (93%) 
37% (9.1%) 

97% (91%) 
34% (8.8%) 

Table 3: Average 10-fold, cross-validation, user-dependent 
word accuracy on 2328 isolated words, 1164 unique, using 
HMMs and deep learning Transformers. 

obtained for P1, both participants’ results followed similar trends. 
After trying 4, 8, 16, 32, 64, and all 124 principal components, we 
discovered that 16 components were the fewest that did not ad-
versely afect recognition. Attempting recognition using temporal 
subsampling at 20 Hz, 25 Hz, 33 Hz, 50 Hz, and 100 Hz showed that 
50 Hz was sufcient for this isolated word task. However, testing 
with the live system below showed that participants could spell 
quickly enough such that accuracy declined. Thus, we retain the 
full 100 Hz rate for our system. 

Figure 11 (center) shows a very interesting trend. With as little 
as 500 words (a random 10% are removed from training for each 
fold of 10-fold cross-validation), the recognizer achieves 90% accu-
racy and 98% 4-best accuracy. The results for 4-best are especially 
interesting if we model the SilentSpeller interface on current mo-
bile phone gesture typing keyboards. These systems provide four 
options for each input. The user can select the top result by sim-
ply proceeding to the next word or tap one of three alternatives. 
By imitating this technique, SilentSpeller will be highly likely to 
provide a correct word from the 1148-word dictionary with just 

one hour of training for each participant. When entering phrases, 
adding a statistical word bigram should further improve the results. 
For the SilentSpeller use cases of silent text entry while mobile, or 
for people with movement disorders, one or two hours of training 
data is quite reasonable, especially since such use cases may often 
use a limited vocabulary [28, 38]. 

5 EXPERIMENT 2: GENERALIZATION TO 
UNSEEN WORDS 

Diferent dictionaries are required for diferent text entry situations. 
In early speech recognition systems, a common dictionary across 
tasks might be trained to establish phonetic models, and then new 
words are added to the phonetic dictionary to tailor the recognizer 
to a given task without retraining. Dictionaries can even be swapped 
as the user changes between tasks. 

Adding untrained dictionary words is also useful for recognizing 
proper nouns. One can imagine a SilentSpeller text entry system 
importing the top 100 most used entries from a user’s contact list 
and adding them to a personal dictionary without the need for 
additional training. In this experiment, we test the resilience of 
the recognizer to words that are added to the dictionary without 
training examples. 

We randomly choose 100 words from the 1164 word dictionary 
to remove from training. Since every word was spelled twice, we 
removed both examples, resulting in a training set of 2128 examples. 
Otherwise, training and recognition were performed as described 
in Experiment 1. Table 4 summarizes the results. 
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Figure 11: Word accuracy versus number of PCA components (left), training examples (center), and frames per second (right). 
n=4 means the correct word was returned in the top four most probable words by the recognizer. The number of PCA com-
ponents were increasingly doubled starting at four and ending with the full 124 dimensions. These fgures correspond to P1’s 
data, though P2’s graphs are similar. 

Participant P1 P2 
Accuracy 93% (84%) 96% (87%) 

Table 4: Character (word) accuracy when testing on 100 
words (200 examples) removed from the training set. 

As expected, there is a drop in performance. However, the system 
still averages 94.5% character accuracy and 85.5% word accuracy 
over the 100 unseen words for the two participants. These results 
are extraordinarily good and suggest that the recognizer can indeed 
generalize to words for which it has seen no examples. 

6 EXPERIMENT 3: TOLERANCE TO 
ON-THE-GO INPUT 

Most silent speech system to date have been limited to seated 
environments as motion artifacts caused by walking often over-
whelm EMG, camera, and ultrasonic sensors. However, we expect 
SilentSpeller to be as accurate at recognizing silently spelled words 
when the user is walking as when seated. The experiment below 
investigates this hypothesis. We have reason to be optimistic: the 
tongue is relatively isolated from the mechanical shock of walking 
(otherwise, voiced speech while walking would not be possible) 
and SilentSpeller’s electrode array fts snugly in the mouth such 
that there is little motion while walking. 

6.1 Participants and corpus 
P1 and P2 provided a total of 428 phrases (107 phrases for both 
the walking and seated conditions for each participant). In later 
experiments, P3–P7 will provide seated phrase data (107 phrases 
each) for training for the live text entry experiment. The 107 phrases 
are from the MacKenzie phrase set and consist of 556 words, 321 of 
which are unique. The most frequently used word “a” appears 24 
times. Repetition of such short connector words is fortuitous. We 
want many examples of the most commonly used words so that the 
recognizer can be tuned for them. 

We used the same capture system that collected the isolated 
dictionary words. Participants enter the isolated words in the order 

in which they occur in the phrases, which emulates entry with a 
live text entry system (but without the ability to see or edit the 
result). For the walking condition, participants walked continu-
ously indoors in their homes (due to Covid-19) while capturing 
the 107 phrases. The SmartPalate and its external data recorder 
were connected to an Apple Macbook laptop that displayed the text 
entry interface and that was carried by the participant. The seated 
condition was identical but performed at a desk. 

Note that this phrase data was recorded weeks or months 
after the initial isolated words for each user. The good results, 
seen below, suggest that the sensing system is robust, consistent, 
and reproducible between sessions. 

6.2 Recognizer 
As we wish to compare walking versus seated text input, we choose 
to use the most advantageous training that is reasonable for this 
study. The recognizer is trained on the two participants’ 2328 iso-
lated dictionary words (each) plus their 107 phrases from the con-
dition not being tested. That is, the recognizer for the walking 
condition was trained with the 2328 dictionary words plus the 556 
words from the 107 phrases collected during the seated condition. 
Similarly, the recognizer for the seated condition was trained with 
the 2328 dictionary words plus the 556 words from the 107 phrases 
collected during the walking condition. No training data is used 
in any test set. During recognition, the system uses a dictionary 
constructed from the 321 unique words from the 107 phrases. A 
bigram is constructed using the 107 phrases and Laplace smoothing 
(so that any word combination is possible). Results with a unigram 
and trigram are included for comparison. 

6.3 Results and Discussion 
Table 5 presents the results of the study. There is little diference in 
the accuracy between the seated and walking conditions, demon-
strating the robustness of SilentSpeller to body motions. Note that 
there is less diference between the character accuracy and the word 
accuracy with this experiment than with the dictionary words. This 
diference can be explained by the higher prevalence of shorter 
words in phrases than in the dictionary. With higher representation 
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participant 
condition 

unigram 
perplexity=226 

bigram 
perplexity=10.5 

trigram 
perplexity=3.25 

1-seated 94% (89%) 99% (98%) 99% (99%) 
1-walking 94% (88%) 99% (97%) 97% (99%) 
2-seated 88% (79%) 94% (93%) 95% (93%) 
2-walking 87% (76%) 96% (93%) 97% (95%) 

Table 5: Comparing walking to seated text input. Character 
and (word) accuracy are shown using diferent n-grams. 

of words such as “of,” “an,” “my,” “a,” etc., the average word length 
is shorter, and the rates are more similar. 

In certain situations, such augmented control and communi-
cation for people with both low dexterity and severe dysphonia 
[28], a limited set of phrases might be used (resulting in very low 
perplexity and easier recognition). To determine if SilentSpeller 
might be suitable for such a situation, we test the recognizer 
with a strict grammar that matches the input to one of the 
500 MacKenzie phrases. Accuracy increases to 100% for all 
four conditions. While silently spelling a phrase is slower than 
silently speaking it, SilentSpeller’s increased reliability might be 
preferred in many scenarios. 

Table 5 also compares results using a unigram, bigram, and tri-
gram and shows the perplexity for each grammar, given the dictio-
nary of 321 words and the 107 phrases. While strong grammars can 
be very useful in limited cases, as in the phrase selection experiment 
just described, one must choose a grammar that is appropriate for 
the task. Here we focus on a bigram, as it allows composition of 
many phrases while requiring less training data than unconstrained 
situations. In this case, the trigram severely limits composition and 
provides little improvement on the results. 

7 LIVE TEXT ENTRY USING SILENTSPELLER 
VERSUS MINI-QWERTY 

We test text entry using a live, interactive version of the SilentSpeller 
recognizer. We could fnd no comparable silent speech system in 
the literature to test against SilentSpeller for the mobile text entry 
task as they were only run ofine [38, 44, 62], have too small a vo-
cabulary [2, 27, 30, 32, 57, 74], are constructed for command phases 
as opposed to text entry [2, 15, 57], or some combination thereof. 
Instead, for reference we again resort to comparing to the most 
common form of English mobile text entry: two-thumb typing on 
virtual mini-QWERTY keyboards [43]. Comparing SilentSpeller’s 
speed and accuracy to a commonly available reference system like 
mini-QWERTY helps establish whether SilentSpeller is viable and 
invites comparison by future silent speech text entry systems. 

7.1 Participants and corpus 
A total of seven participants participated in the experiment, in-
cluding the two participants who had participated in the previous 
sections. Covid-19 restrictions for elective dental procedures lim-
ited recruitment eforts. Since the system is user dependent, ideally 
all users would collect the 2328 examples and 107 phrases describe 
previously. However, this process would have taken an impractical 
amount of time for volunteers. Therefore, we asked the participants 

to collect the 556 words contained in the 107 phrases and 500 addi-
tional randomly selected words from the dictionary. Participants 
required about two hours to collect this data, and, given the accu-
racy versus number of training examples curve in Experiment 1, 
we expected this amount of training to be sufcient. For the two 
participants who provided 2328 examples, 500 words were chosen 
at random and only the seated dataset from Experiment 3 was used. 
The live text entry experiment, which included six 20-minute ses-
sions in total, took two hours. Thus, participation required a total 
of four hours. 

P3-P7 are male, ranging from ages 23 to 45. P2 and P5 are na-
tive English speakers. Due to Covid-19 circumstances, all exper-
iments were conducted in participants’ respective homes using 
Apple MacBook Pro laptops and SmartPalates. Although P3 and P4 
are non-native speakers, they have been living in primarily English-
speaking countries for more than fve years and have acquired 
advanced English oral skills. P1, P6 and P7 are non-native speakers, 
and have not stayed in English native countries for more than 10 
months. Even so, these participants have a basic understanding of 
English (approximately 70 to 90 in TOEFL iBT score, though not all 
of them have taken the test). 

For testing, the participants attempted to input the same 107 
phrases again, as quickly and as accurately as possible while seated. 
We augment the HMM recognizer with the same bigram as de-
scribed above. 

7.2 Text Entry using SilentSpeller 
Based on standard text entry practices established by previous 
work [7, 33, 54], we implemented an interface application to test 
the speed and accuracy of text entry using SilentSpeller. The appli-
cation presents phrases from the MacKenzie-Soukoref phrase set 
to the participant who then transcribes them over the course of 20 
minutes. The SilentSpeller app mimics the user experience from the 
gesture keyboard [72] included on most smartphones. Interactions 
include INPUT (silent spelling), N-BEST-SELECT/TAP (produced 
by touching the front of the palate for more than 0.3 seconds and 
less than 1 second), and ERASE-WORD/STICK (pressing the tongue 
frmly on the entire palate between 0.3-1.0 seconds). While tran-
scribing each phrase, the user presses a push-to-record button and 
inputs each word by silently spelling with the SmartPalate (Figure 
12b). Upon button release, the captured data frames are recognized. 
In about a second, the interface displays a list of the fve best word 
predictions in order of probability (Figure 12c). If the next input is 
started, the frst candidate is assumed correct. If, instead, the correct 
answer is in the 5-best list, the user selects the best candidate with 
the TAP gesture (Figure 12d). If no correct answer is shown, the 
candidates are deleted with the STICK gesture; the system returns 
to the input state so the user can start over with that word. When 
the user has completed a phrase, the user presses the right shift to 
move to the next phrase. 

STICK and TAP are distinguished from swallowing using simple 
thresholds. Gestures are triggered when 20 or more electrodes are 
activated. If the gesture takes longer than a second, the system 
recognizes and ignores a swallow. If less than 80 electrodes are 
activated by the gesture, the TAP gesture is recognized. If more 
than 80 electrodes are activated, the STICK gesture is recognized. 
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Figure 12: SilentSpeller live text entry. a) Three screens are displayed: a real-time palatogram, a palatogram of the latest 
recorded sample, and text prompts and results. b) User starts recording the next word by pushing the command button. c) The 
interface shows the user a list of the fve best word predictions in order of probability. d) User can choose the words from the 
list using TAP gesture. 

Activation means that the electrode was activated at one of the time 
frames during the gesture. These gestures can only be recognized 
when the user is not pressing the push-to-talk command button 
and cannot be confused with silent spelling. 

7.3 Text Entry with mini-QWERTY 
We ran the same text entry experiment using virtual QWERTY 
keyboards on smartphones for comparison. Participants used their 
personal smartphone for this experiment (some used iPhone, others 
used various Android models) in portrait mode using two thumbs 
for entry. Participants were seated and entered one character at a 
time without word prediction but with auto-correction to retroac-
tively fx spelling after the user has entered a word. To be clear, 
the user typed one letter at a type (no gesture typing) and was not 
allow to chose from a list of suggested words to avoid typing the 
rest of the word (e.g. typing “mis” and selecting “mission” from 
a autocompletion list). However, if the user mistyped a word, the 
autocorrect on the keyboard had a good chance of correcting it 
(e.g., “misson” would be corrected as “mission”). This method of 
mini-QWERTY text entry was chosen as it is the fastest method 
reported (43wpm vs. 36wpm across all methods) in a survey of 
37,000 smartphone users [43]. 

7.4 Metrics 

the input to the return of the recognition result from the server), 
was removed from the overall time. The goal of this experiment 
is to measure the speed of silent spelling for text input, not the 
speed of a recognizer. This compromise probably underestimates 
the speed of silent spelling as the second or two delay in the recog-
nizer interrupts the fow of the user. With focused development we 
expect the recognizer latency to decrease to under 20 ms and not 
be noticeable by the user. 

Total Error Rate (TER) is a metric proposed by Soukoref et 
al. [54] to measure text entry error. It is an alternative to using 
minimum string distance that considers all keypresses in the input 
stream, such as backspaces, as well as the fnal transcript. The input 
stream is divided into the following four classes: 

• Correct (C) keystrokes – alphanumeric keystrokes that are 
not errors. 

• Incorrect and Not Fixed (INF) keystrokes – errors that go 
unnoticed and appear in the transcribed text. 

• Incorrect but Fixed (IF) keystrokes – erroneous keystrokes 
in the input stream that are later corrected. 

• Fixes (F) – the keystrokes that perform the corrections (in 
this case, erase word and next n-best-candidate). 

Using these classes, the TER is calculated by the following equa-
tion. 

We calculate words per minute (WPM) using the formulas presented 
by Mackenzie, as stated previously [35]. In this experiment, the 
time required for recognition (i.e., the time from the completion of 

IN F + I F 
TotalErrorRate% = · 100 

C + IN F + IF 
(2) 
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Since SilentSpeller recognizes letters in the context of whole 
words instead of letter-by-letter, we must adapt the TER. For ex-
ample, suppose SilentSpeller recognizes a word incorrectly, sug-
gesting a word that consists of fve letters. The user triggers the 
ERASE-WORD gesture, erasing the suggested word. The gesture 
would count as a single fx (F) (“<”), and the fve incorrect letters are 
counted as fve incorrect but fxed (IF) keystrokes. In contrast, in the 
case of an N-BEST gesture (represented by “*” below), the gesture 
counts as a single fx (F) with no IF keystrokes. One can argue that 
SilentSpeller is a gesture recognition system that injects characters 
into the text entry stream only after the user confrms the recogni-
tion of the current word by continuing to the next word, selecting an 
alternative from the n-best list, or erasing the word and re-entering. 
In such a case, counting IF keystrokes after a ERASE-WORD or 
N-BEST gesture unfairly penalizes the system. An alternative ar-
gument is that SilentSpeller should inject the letters for each word 
edited with ERASE-WORD and N-BEST gestures and inject cor-
responding backspaces when an alternative word is selected or a 
word is erased (see Zhang and Wobbrock [73] for a discussion). The 
method outlined here seems a reasonable compromise. 

We illustrate how the TER is calculated in our system using an 
example sentence “that is very unfortunate.” We suppose the user 
entered "that" and "is" correctly but failed to enter "very" ("berry" 
was entered instead) and also did not get a good candidate in the 
n-best list. The user deletes the word. By redoing the input, the 
correct word appeared as the second candidate in the n-best list, 
so he did a N-BEST gesture to choose that candidate. The resulting 
input stream is 

Presented Text : [that is very unfortunate] 
Input Stream : [that is berry<*very fortunate] (29 in 
total) 

These are classifed as: 
C : [that is very fortunate](22) 
IF : [berry](5) 
F : [<*](2) 
INF : [](0) 

The resulting TER is 18.5%. Similarly, when the sentence presented 
is “time to go shopping” and input stream is “time to her shopping”, 
the calculation is 

Presented Text : [time to go shopping] 
Input Stream : [time to her shopping] (20 in total) 
C : [time to shopping] (17) 
IF : [](0) 
F : [](0) 
INF : [her] (3) 

The resulting TER is 15.0%. 

7.5 Results 
Table 6 shows the results of the live text entry experiment. SilentSpeller’s 
average session speed was 37 wpm. Average text entry accuracy 
(1 - TER) was 87%. Unlike the previous ofine experiments, this 
accuracy metric considers failures of the user to type correctly, rec-
ognizer failures, and corrections. Participants mostly chose speed 
over accuracy, often leaving characters uncorrected, especially for 
P3, who chose not to edit at all. The average mini-QWERTY speed 

was 48wpm, well above the reported 36wpm average measured 
across 37,000 users in the literature [43], which might be expected 
for students recruited at technical universities. Average accuracy 
was 93%. 

While SilentSpeller’s speeds were slightly above the reported 
36wpm mini-QWERTY average [43], for this group of users mini-
QWERTY was faster. Certainly these technically savvy participants 
had much more experience with mini-QWERTY than SilentSpeller, 
which suggests that speeds and accuracies might improve with more 
practice. Participants quickly adapted to silently spelling words for 
text entry, though some participants did remark on improving with 
practice with the interface. P3 consistently improved his results each 
session. P2 discovered that his recognizer was good enough that 
he rarely waited to see the result of the output before continuing 
to the next word. This strategy resulted in a maximum 53 wpm 
speed while still maintaining 91% accuracy. When asked about his 
experience, P2 reported a sense of “fow” when the recognizer was 
working well which allowed him to keep a rhythm to the text input. 
This success suggests improving recognizer accuracy may cause 
the other participants to reach similar speeds. 

At the end of the experiment, P1 and P2 attempted another infor-
mal 20 minute live text entry SilentSpeller session while walking. 
They achieved similar results to their seated performance, confrm-
ing the live system’s tolerance to on-the-go usage, as is expected 
given the of-line experiment. 

Note that the main live text entry experiment occurred about 
a week after the phrase training data was collected and weeks to 
months after the initial isolated words were collected. Again, the re-
sults suggest that the SmartPalate provides robust and reproducible 
results, even over signifcant time gaps between sessions. 

When optimizing the system for recognizer speed, the average 
word recognition time was 200ms whereas spelling a word requires 
around 1 second. This result suggests that if we structured the 
system to execute the Viterbi recognition algorithm synchronously 
with the incoming data (as opposed to batching the data for each 
word), the user would perceive little to no delay in recognition. 

7.6 Qualitative and Subjective Comments 
P4 mentioned that SilentSpeller felt “magical” and was surprised 
at how well it worked. They believed it could be a “game changer” 
in sports or construction. While the dental retainer is considered 
a considerable drawback by most participants, P4 would consider 
using it while running or cycling. Besides that the device caused 
excess salivation, P4 considered it surprisingly comfortable during 
the long training sessions. P7, in contrast, mentioned having to 
keep their mouth open to avoid false triggering the system, which 
was tiring. P5 really liked the idea of discreet input but found the 
task of spelling to be too cognitively demanding. P5 also had the 
lowest recognition rates and said that caused him to “overthink” the 
interface. Several other participants mention the mental demand 
of spelling but like the ability to do hands-free text input. Perhaps 
one way to address this mental demand is to progressively include 
common spoken (not spelled) words in the base recognizer that 
are easily distinguishable to make a hybrid silent spelling/speech 
system. P2, who used the system while walking, remarked that he 
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Speed (WPM) Accuracy (%) 

Method/Session 1 2 3 1 2 3 

mini-QWERTY (iPhone X) 35 36 38 95.7 95.9 96.7 
P1 SilentSpeller 42 41 43 95.5 93.4 93.8 

mini-QWERTY (Pixel 4 XL) 35 39 43 92.8 91.0 89.7 
P2 SilentSpeller 46 53 52 91.2 89.8 91.2 

mini-QWERTY (iPhone 11 pro max) 27 30 31 97.8 95.1 95.4 
P3 SilentSpeller 30 36 41 91.7 89.3 91.9 

mini-QWERTY (Pixel 4) 43 45 49 90.5 91.7 93.6 
P4 SilentSpeller 30 38 34 83.8 87.8 86.4 

mini-QWERTY (Pixel 4a) 80 80 92 93.7 91.4 91.8 
P5 SilentSpeller 38 33 37 78.7 82.1 74.6 

mini-QWERTY (Oppo reno3 A) 50 44 45 85.8 86.5 93.4 
P6 SilentSpeller 31 28 26 82.5 92.3 90.2 

mini-QWERTY (iPhone 11) 56 57 59 92.1 91.2 91.7 
P7 SilentSpeller 30 29 32 82.6 77.6 83.8 

Table 6: Live text entry results on SilentSpeller and mini-QWERTY keyboard. Words per minute (left) and accuracy (right) for 
each of the seven participants’ three sessions. Accuracy is defned as 1 - Total Error Rate. 

timed his silent speech input to the pace of his footsteps, which 
seemed to improve his speed and consistency while silent spelling. 

8 DISCUSSION AND FUTURE WORK 
In general, SilentSpeller achieves viable text entry rates for novices 
with the method, especially when compared to these users’ expert 
virtual mini-QWERTY smartphone rates. In addition, SilentSpeller 
has the advantage that it could be used without the need to encum-
ber the hands. 

In retrospect, more training data might have been wise to reduce 
live text entry error rates. However, we wished to observe perfor-
mance across users when a reasonable amount of training (about 1-2 
hours) was collected to test the potential practicality of the method. 
Certainly, the system performed admirably for P1-P3 and P6, and 
P4 and P7 achieved text entry results that might be reasonable for 
informal SMS-like communication between colleagues. It would 
be interesting to re-run the experiment using all training data that 
was available for P1 and P2 and collecting the additional fve or six 
hours of training from P3-P7 to achieve parity. By optimizing the 
recognizer across all data, perhaps most participants could achieve 
their mini-QWERTY speeds. 

English skill and SilentSpeller’s results do not seem to be cor-
related. P1, a non-native speaker who had not lived in an English-
speaking country for more than 10 months, scored high on both ac-
curacy and speed. However, the high scores may be better explained 
by the fact that P1 and P2 are skilled users who have continuously 
participated in the project and provided a large dataset of 2328 
samples. P6, who has never been to an English-speaking country, 
achieved an accuracy of over 90% in the two sessions. On the other 
hand, P5 is a native speaker and an outstanding mini-QWERTY 
typer, but he had the lowest average accuracy in SilentSpeller. 

An examination of the participant with the poorest accuracy 
(P5) reveals a concerning pattern. Letters pronounced with an “EE” 
sound (B, C, D, E, E, P, T, and V) are often confused. This result is 

understandable as the electrodes on the SmartPalate cannot sense 
the position of the lips, which are used to produce the sounds 
associated with these letters. This trend can be found in all the 
participants’ data, suggesting that the triletter context modeling 
and dictionaries are needed to help diferentiate words with these 
letters. The solution may be simple: add additional electrodes in 
front of the teeth. We are working with Complete Speech, the 
makers of Smart Palate, to create such a system. 

The question remains as to why P5’s result is so poor compared 
to the other participants. This result is especially curious as P2 
and P5 are the only native English speakers in the experiment and 
have vastly diferent accuracies. P5 might difer from the other 
participants in that perhaps the SmartPalate did not ft as well, the 
mouth shape might difer in some way, or that the electrodes are 
miscalibrated in a subtle way that is not apparent upon inspection 
of the data using the visualizer. Recruiting more participants and 
comparing their results will help solve this puzzle. 

Figure 13 demonstrates that early testing with a potential user 
before they give a full training set of data can predict future good 
or poor performance. P2 and P5 achieved average accuracies of 
91% and 78% in live text entry experiments, respectively, after full 
training. However, early testing results with as little as 200 examples 
(about half an hour’s worth of training data) would have allowed 
the researchers to predict whether or not continuing to collect data 
would have led to a good experience with SilentSpeller for the 
potential user. 

Compared to EMG, ultrasound, and camera-based silent speech 
systems, SilentSpeller can be donned and dofed more easily (the 
equivalent of putting in a dental retainer) and can be used while 
on-the-go. With continued development, SilentSpeller hardware 
could be hidden from the view of casual spectators in an in-mouth 
retainer. 

SilentSpeller may ft a niche for text entry for those who are 
on-the-go and need to communicate silently and hands-free. Al-
ternatively, SilentSpeller might fnd use with those with manual 
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Figure 13: Leave one word out testing on small training sets 
(N=200, 300, and 400) can predict SilentSpeller’s future suc-
cess for a given user. 

dexterity issues who need to be quiet while typing due to being 
in a public place. Most means of text entry for those with limited 
manual dexterity [39, 60, 68] report slower input rates and slower 
learning curves than observed here, suggesting a future direction 
of research directly comparing against current methods for par-
ticipants with multiple sclerosis, Parkinson’s, cerebral palsy, and 
muscular dystrophy. For people with both severe dysphonia and 
low dexterity, a more conservative version of SilentSpeller might be 
used where the user spells phrases for controlling home automation 
or choosing one of N phrases for communication. 

While most of the literature focuses on silent speech, we decided 
to investigate silent spelling and were surprised at the viability of 
the idea. Using spelling for word-by-word text entry intuitively 
seemed too slow, but Wizard of Oz testing showed that reason-
able text entry rates are possible. This observation suggests a re-
examination of the silent speech literature. For example, EchoWhis-
per [16] reports 92% accuracy on 45 silently spoken words using 
ultrasonic backscatter from standard commodity smartphones. Per-
haps by limiting the classes to 26 letters and using the SilentSpeller 
framework described here, a full text entry system could be created. 
Such a system might prove more valuable for the general public, 
allowing unobtrusive text entry on crowded public transportation, 
for example, without needing to learn the QWERTY keyboard (or 
perhaps keyboards for other languages). 

8.1 Limitations 
While this paper shows the potential of SilentSpeller, there are 
obvious limitations with respect to the number of participants, 
amount of training data, number of text entry sessions, hardware 
sensing, and the recognition pipeline. Here we review some options 
for future work. 

8.1.1 Hardware improvements. The current SmartPalate retainer 
sends its sensing data through a USB cable, requiring the user to be 
tethered to a PC or smartphone, which limits the system’s mobility. 

The current system can be made wearable for testing; Figure 1a 
shows such a system constructed using a Vufne head worn dis-
play, the Smart Palate, and the support hardware in a backpack. 
However, to make SilentSpeller more portable, as shown in Figure 
14, we developed a compact Bluetooth Low Energy dongle that 
retrofts the SmartPalate retainer to enable it to send its data wire-
lessly. Nevertheless, the SmartPalate is still obtrusive in many social 
settings. Though the SmartPalate’s sensing probes are completely 
in-mouth, they are connected to the capacitive sensing circuitry 
hanging outside the mouth through a fexible PCB ribbon. Our lat-
est prototype (Figure 15) suggests it is possible to enclose the entire 
system, including sensing, processing, communicating and pow-
ering in medical grade silicone that resides completely in mouth 
as with Lee et al. [31]. While our current in-mouth prototype uses 
Bluetooth Low Energy for communication, backscattering might be 
used to signifcantly increase battery life. Sensing can be improved 
by providing analog instead of binary values. Lip-facing electrodes 
could be added to sense lip motions, and optical proximity sensors, 
similar to those in the parallel work by Stone and Birkholz [55] can 
be added on top of the mouth near the teeth to detect opening of the 
mouth. These extra sensors should improve recognition of letters 
that currently have similar palatograms (e.g., B/P and D/T/Z). 

Each mouthpiece of the system is custom-made based on each 
user’s dental impression to ensure a stable ft and consistent posi-
tioning of the tongue among diferent users. An alternative form-
factor for the device is the mouth guard designed for treating brux-
ism (i.e., teeth grinding), where users close their mouth to hold 
the guard with their teeth. Though this variant might constrains 
a user’s mouth movements, it fts the application of silent speech 
and subtle interfaces where minimal visible movement is preferred. 

Electrical stimulation through the current electrodes could pro-
vide the user with feedback from the system [47, 48]. Such tactile 
stimulation could help users with feedback while using edit gestures. 
Alternatively, such an electrode array might allow for two-way com-
munication between two users. Perhaps some words or gestures 
entered on one SmartPalate could be identifed by another user 
through electrical stimulation playback on a second SmartPalate. 

8.1.2 Recognizer improvements. Besides adding sensors to the Smart-
Palate to help recognize letters distinguished by lip movement, 
additional accuracy improvements might be obtained from using 
linear discriminant analysis (LDA) or independent component anal-
ysis (ICA) instead of PCA. Initial experiments on the data from 
P1 and P2 for the frst experiment show potential improvements 
using a variation of segmentally-boosted hidden Markov models 
(SBHMMs) [70]. P1’s error reduced 38% (2.70% to 1.67% charac-
ter error and 7.17% to 4.85% word error), but P2’s error increased 
52% (3.43% to 5.22% and 9.11% to 13.25% word error). While initial 
work with deep learning Transformers [25, 61] proved disappoint-
ing (66% character error rate), additional data or data augmenta-
tion may eventually lead to improvements. As more participants 
are enrolled, we can experiment with user-independent and user-
adaptive models. Other improvements include larger vocabularies, 
more sophisticated grammar models, and the ability to recognize 
out-of-vocabulary words. 
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Figure 14: A compact Bluetooth Low Energy (nRF52832) dongle that enables the Smartpalate retainer to communicate wire-
lessly 

Figure 15: Wireless SilentSpeller prototype a) A portable wireless prototype for SilentSpeller that uses a Bluetooth low energy 
(nRF52832) micro-controller for communication and capacitive sensing b) A user wears the prototype by putting the micro-
controller and battery in the cheek 

Short, infrequent words were the most difcult to recognize with 
SilentSpeller, while longer words would often be recognized cor-
rectly even if the user misspelled them. This observation suggests 
we should optimize the number of examples of each word given 
as training by each user. In a pilot experiment, after identifying 12 
troublesome short words and having our participants provide six 
more examples of each, those words became much more reliable. 

Text entry speeds might be increased by improving the recog-
nition of the ERASE-WORD and N-BEST commands. Increasing 
the speed of the recognizer would allow more fuid input by the 
user and perhaps lead to faster texting rates. If the interface were 
changed to be more akin to a transcribing speech recognizer, the 
user could spell multiple words or the entire phrase at a time and 
only correct when necessary. With such an interface change, the 
recognizer could use more language context when recognizing 
letters at the phrase level, which would lead to less errors. 

8.1.3 User independent recognition. Since SilentSpeller already re-
quires the creation of a custom ft retainer, one would expect the 
extra inconvenience of providing training data would not be too 
much of an additional barrier for interested potential users. How-
ever, starting with a user independent recognizer would allow im-
mediate use and lead to faster improvements in accuracy for a user 
adaptive system. In an initial exploration, we performed leave one 
user out cross validation on the frst 500 words (randomly) collected 
from the frst fve participants. The recognizer dictionary was lim-
ited to the 500 words in each test set. Note that some words in 
the dictionary would not have been trained in the training set due 
to the randomness of collection. Results averaged 55% character 
accuracy and 36% word accuracy. 

8.1.4 Study Improvements. Punctuation, capitalization, and emojis 
are not included in this experiment as we are frst attempting to 
explore whether this technique of text entry is feasible and be 
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able to have a baseline comparison to other techniques. This area 
can be the focus of signifcant future work (e.g., how should one 
spell characters with multiple pronunciations such as “&”, “!”, or 
even ”0”?). However, many experiments in the text entry literature 
[7–9, 35, 66, 68, 69, 73] use a similar corpus to the one used here, 
arguing that there are compelling situations where the 26 letters 
and space are sufcient for communication and automation control. 

Currently we are using a modifcation to the total error rate 
to address how SilentSpeller is used. Recently, Zhang and Wob-
brock have developed new metrics to address situations with auto-
correction and word prediction [73]. Future studies will adopt and 
adapt these metrics for SilentSpeller testing. In some senses, com-
paring SilentSpeller to smartphone QWERTY text entry is unfair 
without auto-correction using the same limited vocabulary and 
bigram. However, pilot testing adapting Zhang and Wobbrock’s 
open source text entry testing software with these language mod-
eling advantages shows a similarity to the results here. Further 
experimentation is needed. 

9 CONCLUSION 
We introduce SilentSpeller, an interface for text entry using un-
voiced spelling of words. We evaluate SilentSpeller’s recognition 
system on a dictionary of 1164 isolated words resulting in average 
97% character accuracy. In another test, text entry speeds and accu-
racies were relatively unafected by the user walking during input. 
Live text entry experiments with seven participants demonstrated 
texting rates competitive with smartphone virtual-QWERTY input 
rates but without necessarily encumbering the hands. These re-
sults suggest that SilentSpeller can be an efcient text entry system 
and may fnd niche applications for on-the-go, loud environment, 
hands-free text entry or silent text entry for people with move-
ment impairments. Further work will explore specifc application 
domains, tune recognition accuracy by adding sensors for the lips, 
and determine whether user-independent recognition and user 
adaptive recognition may be possible. 
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