

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

Unit: Modular Development of Distributed Interaction
Techniques for Highly Interactive User Interfaces

Alex Olwal1,2 Steven Feiner1

1 Department of Computer Science
Columbia University

New York, USA

2 Department of Numerical Analysis and Computer Science
Royal Institute of Technology

 Stockholm, Sweden
alx@kth.se, feiner@cs.columbia.edu

Figure 1. The Unit User Interface, dis-
playing the Unit Graph that specifies the
interaction for the three–degree-of-
freedom mouse.

Figure 2. The flexible pointer selecting an
obscured object, without visually interfering
with the occluding object.

Figure 3. The 3DOF mouse, a simple com-
posite input device consisting of two wireless
optical mice. A Unit Graph extracts the rota-
tional acceleration in the plane of the surface.

Abstract
The Unit framework uses a dataflow programming language to
describe interaction techniques for highly interactive environ-
ments, such as augmented, mixed, and virtual reality. Unit places
interaction techniques in an abstraction layer between the input
devices and the application, which allows the application devel-
oper to separate application functionality from interaction tech-
niques and behavior.

Unit's modular approach leads to the design of reusable applica-
tion-independent interaction control components, portions of
which can be distributed across different machines. Unit makes it
possible at run time to experiment with interaction technique be-
havior, as well as to switch among different input device configu-
rations. We provide both a visual interface and a programming
API for the specification of the dataflow. To demonstrate how
Unit works and to show the benefits to the interaction design
process, we describe a few interaction techniques implemented
using Unit. We also show how Unit’s distribution mechanism can
offload CPU intensive operations, as well as avoid costly special-
purpose hardware in experimental setups.

C.R Categories and Subject Descriptors: D.1.7 Visual Pro-
gramming; D.2.2 Design Tools and Techniques—User Interfaces;
D.2.6 Programming Environments—Graphical environments;
D.3.2 Language Classifications—Data-flow languages; H.3.4
Systems and Software—Distributed Systems; H.5.1 Multimedia
Information Systems—Artificial, augmented, and virtual realities;
H.5.2 User Interfaces—Graphical user interfaces (GUI), Input
devices and strategy, prototyping; I.3.4 Graphics Utilities—
Virtual device interfaces

Keywords: interaction techniques, dataflow programming, visual
programming, augmented reality, mixed reality, virtual reality.

1 Introduction
Despite tremendous improvements in computer systems over the
past several decades, designing and developing interaction tech-
niques is still a difficult task, especially for highly interactive
immersive 3D environments, such as Augmented Reality (AR),
Mixed Reality (MR) and Virtual Reality (VR). Interaction in im-
mersive environments involves many different types of user input
and many devices with which that input is provided, such as posi-
tion and orientation trackers, voice input, and haptic devices, in
addition to conventional mice, trackballs, touch screens, and key-
boards. While there is an increasing number of well-known meta-
phors for immersive interaction, such as “the virtual hand”
[Bowman and Hodges 1997], “ray pointer” [Bowman and Hodges
1997], and “flashlight pointer” [Liang and Green 1993], there is
still much variation in how these metaphors are implemented.

Interaction techniques involve the mapping of data from input
devices to application semantics. Therefore, we find it particularly
attractive to use a dataflow approach to the design of interaction
techniques, in which data is processed through a customizable
network. We introduce the Unit framework [Olwal 2002], which
allows users to specify 2D and 3D interaction techniques as data-

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

flows and to modify them in running programs. We use our
framework to abstract interaction techniques from applications
that use them, as well as from input devices that control them.
This allows users to flexibly configure and dynamically change
interaction technique behavior, independent of both input devices
and applications. Furthermore, in our framework, a dataflow can
be easily distributed over multiple machines to create distributed
interaction techniques, as well as distributed applications. As
shown in Figure 1, we use a direct-manipulation, visual-
programming representation to specify the behavior of the data-
flow in the Unit User Interface (Unit UI), which is itself imple-
mented with Unit.

In the remainder of this paper, we first present related work in
Section 2, followed by brief introductions to the Unit framework
and the prototype Unit UI in Sections 3 and 4. To explain how
Unit can be used, we describe some example interaction tech-
niques that we have developed with it in Sections 5, 6 and 7: a
novel flexible pointer for selecting objects in 3D environments
(Figure 2) [Olwal and Feiner 2003a], an experimental setup for
analyzing non-verbal features of speech [Olwal and Feiner
2003b], and a quickly prototyped rotationally sensitive mouse
(Figure 3), created from a pair of conventional mice. We describe
our implementation in Section 8, and present our conclusions and
future work in Section 9.

2 Related Work
Data flow programming and directed-graph–based visual pro-
gramming languages have been used together by a number of
researchers to design 2D UIs and interaction techniques. Projects
that take this approach have included Smith’s InterCONS [Smith
1988], Borning’s ThingLab [Borning 1981], and Maloney and
Smith’s Morphic user interface framework [Maloney and Smith
1995] for Self [Ungar and Smith 1987]. A key issue here is the
recognition that interaction techniques essentially map the outputs
(and inputs) of interaction devices to the inputs (and outputs) of
applications; this observation has long been an underlying theme
of work on building formal models of abstract graphical input
devices, which in turn can be composed together in graphs to
create hierarchical input devices [Anson 1982, Duce et al. 1990].

Most 3D interaction techniques can be conceptualized this way,
and 3D toolkits that embody these techniques (e.g., [Kessler et al.
1997, CaveLib 2003, VRJuggler 2003, VRPN 2003]) typically

use abstract input devices. We have chosen to abstract the interac-
tion technique components in a similar fashion to BodyElectric
[Lanier et al. 1993], ICON [Dragicevic and Fekete 2001] and
InTml [Figueroa et al. 2002]. (See Figure 4.) As in these systems,
our components are dataflow graphs, which are assembled into
customized interaction techniques. In contrast to InTml, whose
developers emphasize their XML-based specification language,
we have chosen to focus on an interactive design process in which
interaction techniques can be modified at runtime. We have also
been more concerned with design issues that are typical for highly
interactive distributed environments, such as AR/MR/VR, which
distinguishes our framework from systems targeted for a user on a
single computer, such as ICON. While BodyElectric also ad-
dressed 3D virtual environments, its dataflow operated on only a
single machine (a Macintosh that controlled one or more SGI
workstations). In contrast, Unit's dataflow graphs can be spread
across multiple machines.

Our approach allows the development of flexible interaction tech-
niques, portions of which can be distributed, as well as replaced
and remapped at runtime, and we provide a user interface for
visual dataflow programming of these behaviors, as well as a
programming API. While the direct-manipulation creation of 3D
widgets is an appealing approach [Zeleznik et al. 1993], we have

Figure 4. a) Traditional input device interface for an interactive application. Input devices are mapped to functionality on the application
level, making it hard to change devices and behavior. b) Unit places interaction techniques in an abstraction layer between input devices
and the application. This layer can be changed for different combinations of interaction devices and behavior. c) Unit’s modularity also
makes it possible to abstract interaction techniques from each other.

Figure 5. Two units with two connected properties in the Unit UI.
As the text property changes, the width field of the dimension
property of the label is updated.

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

chosen a dataflow language for its clear depiction of the mapping
between device outputs and application inputs. While our work on
Unit primarily applies this approach to the design of experimental
3D interaction techniques, we also believe it is of significant rele-
vance to the design of new input devices (e.g., [Fitzmaurice et al.
1995, Greenberg and Fitchett 2001, Suzuki and Kato 1993,
MacKenzie et al. 1997, Resnick 1993, Hinckley and Sinclair
1999]).

3 The Unit Framework
The Unit framework uses the concept of units to represent the
nodes in the data flow. Each unit has any number of properties
and any number of connections to properties in other units, as
shown in Figure 5. Two units with two connected properties in the
Unit UI. As the text property changes, the width field of the di-
mension property of the label is updated.. When a property is
updated, a special method is called, which by default updates all
connected properties. Customized units typically override this
method with their own data processing, and when done, typically
redirect to the default method. These connections can also be
made over the network, allowing each unit in the dataflow to be
able to share its properties and listen to property changes, any-
where on the network.

These simple rules allow the design of flexible and customizable
units that specify the desired behavior through their combination
into Unit Graphs, much like electrical circuits.

Units
As mentioned above, the key components of a unit are its proper-
ties and the ability to maintain and update connections to proper-
ties in other units.

Properties
Properties are attribute-value pairs, in which the value can be a
pointer to any Java Object.

Connections
Connectivity is peer-to-peer, where only the involved units are
aware of their connections and are solely responsible for adminis-
tering their relationships. Connections between two units are typi-
cally accomplished by reference, with the data pointer of the
source property initially copied to the target property. When an
update is made, the target unit is notified that the data has
changed. We also provide the ability to make connections by
value, in which each update replicates the data in the source unit;
however, connections by reference are typically preferred for
efficiency. In addition, connections can be created through a chain
of references to fields and methods in the property value, provided
that the resulting source and target values are of the same data
type. These references are more expensive, since they require
dereferencing, evaluation, and replication.

Figure 6 shows a simple example in which two mice are used to
provide six–degree-of-freedom control of an application.

Figure 6. A screenshot from the Unit UI, in which a dataflow graph is being specified for direct control of six degrees of freedom through
the use of two mice. (We use the scroll wheel to provide a third degree of freedom from each mouse.)

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

Distribution
Connections can be transparently distributed over Java Remote
Method Invocation (RMI), with the addition of the hostname in
the specification of the connection. Following the peer-to-peer
approach, each unit is individually distributed through the RMI
registry and directly accessible to other units.

This distribution approach allows parts of Unit Graphs to be dis-
tributed over an arbitrary number of applications running on an
arbitrary number of machines. A common problem in immersive
environments is the use of hardware, such as six–degree-of-
freedom trackers, that have a permanent physical connection to a
single machine. Unit not only allows cross-platform access to
platform-specific devices, but also simplifies the sharing of ma-
chine-specific devices. Our framework allows several Unit
Graphs, running on different machines or within different pro-
grams on the same machine, to communicate as a single graph,
providing transparent access to data and flow control from any-
where.

Core components
Unit, the core class, which is the superclass of all units, provides
the general unit functionality, which most importantly is the han-
dling of properties, connections, and distribution. Two units are
connected by specifying the source unit, source property, target
unit, and target property, and an optional host name for remote
connections.

We have also implemented a set of core units that provide addi-
tional functionality. These include units for flow control, such as
switches and multiplexers, units for scalar and vector operations,
and units for I/O (multiple mice, keyboards, six–degree-of-
freedom sensors, and speech recognition/synthesis).

The units are arranged in a class hierarchy under the Unit super-
class. It is easy to implement new units, which typically involves
overriding the changeProperty method that is called on every
property update. Most core units have a set of reserved property
names that are used for their specific input and output properties.

4 The Unit User Interface
We created the Unit UI, shown in Figures 6 and 7, as a comple-
ment to our programming API, to allow users to design, manipu-
late, and visualize the dataflow in a Unit Graph.

The Unit UI lets the user add, modify and delete units, properties
and connections, as well as load and save Unit Graphs. Besides
visually displaying the dataflow as directed graphs with units,
properties and connections, live data propagation is visualized by
highlighting a property for a short time after it is updated. The
user can also switch to live views of values of interest.

The Unit UI was implemented with units, using the same dataflow
approach as the interaction techniques it manipulates—
demonstrating that our framework does not restrict itself to inter-
action technique specification, but also applies to traditional ap-
plication logic. The Unit UI is a 3D application, and can thus

Figure 7. The dataflow for the tweaking code that manipulates parameters in the flexible pointer through a mouse with a thumb-controlled
joystick. Clicking the second mouse button alternates the parameter to be modified, while the movement of the joystick changes the value.
The result is accessible in the unit named “parameters” at the bottom, which is remotely connected to the graph for the flexible pointer.
(Screenshot from the Unit UI.)

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

coexist in the immersive environment, side-by-side with the inter-
action techniques whose behavior it controls.

However, because of the limited field-of-view and low (800×600)
resolution of our head-worn displays, we find it more productive
to interact with the Unit UI in 2.5D on high-resolution
(1920×1200) 24” desktop displays. In the following sections, we
describe our experience with Unit by presenting some of the ex-
perimental interaction techniques that we have developed with it.

5 The Design of an Interaction Technique for
Immersive Environments

We have implemented a novel interaction technique, called the
Flexible Pointer [Olwal and Feiner 2003a], which is an extension
of existing ray-casting techniques for selection in immersive envi-
ronments. The flexible pointer allows the user to point around
objects, with a curved arrow, for selection of fully or partially
obscured objects, as well as to more clearly point out objects of

interest to other users in a collaborative environment. The flexible
pointer, shown in Figure 8, reduces ambiguity by avoiding ob-
scuring objects, which would have been selected with traditional
ray-casting techniques. The flexible pointer also has a visual ad-
vantage in situations in which it is easy to point out an object,
without obstructing the object of interest, while still providing a
continuous line from the user to the target.

The problems that we address with the Unit framework are how
users can control the pointer, and how we can interactively mod-
ify and tweak this mapping, at runtime and during the design
phase.

Implementation
First, we have to decide on a representation for the geometry of
the flexible pointer. We choose a Quadratic Bézier spline, where
position, length, and curvature of the pointer are controlled by
three points in space.

Figure 8. The flexible pointer interaction technique provides easier selection and clearer indicative pointing in collaborative environments,
in addition to the ability to select fully or partially obscured objects.

Figure 9. Overview of the flexible pointer interaction technique during the design phase. From right to left: The application
implements the geometry for a Bézier curve pointer and uses a distributed unit to listen to changes in its properties. The Unit UI is run on a
second computer on the network. The graph manipulated by the Unit UI outputs the three parameters to the Bézier curve, while taking the five
curve parameters as input. Two six–degree-of-freedom trackers provide the position properties and length, and the curvature characteristics
are derived from their orientation. The behavior of the flexible pointer can be tweaked by a graph that lets the user manually adjust the
constants with a mouse-compatible device. Interaction technique abstraction occurs at several stages here, most clearly between the applica-
tion, the Unit UI, and the sensors.

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

Secondly, we implement a corresponding, customized unit that
listens to changes in its position, end point, and control point
properties, and updates the geometry accordingly. We now have a
mechanism for listening to, and updating the values of this unit,
both locally and over the network. Any component in our frame-
work is thus able to listen to changes or update the geometry of
the pointer, by accessing these properties. For increased precision,
our prototype flexible pointer utilizes a two-handed approach,
where the hands are tracked with two six–degree-of-freedom
trackers, the distance between the hands map to the length of the
pointer, and the relative bending of the hands determines the cur-
vature characteristics of the pointer. We implement this control
behavior as a separate Unit Graph that updates the properties of
the above-mentioned unit that is controlling the geometry.

Design process
One of the hardest tasks in interaction technique design is the
assignment of appropriate values to constants, and as with most
interaction techniques, there are several such constants for the
flexible pointer (e.g., the scale factor for the mapping of the dis-
tance between the user’s hands to the length of the pointer).

Thanks to Unit’s modularity, separate Unit Graphs can be used for
interactive tweaking and debugging of the running interactive
technique. We constructed a new graph that takes input from a
small handheld presentation mouse with a thumb-controlled joy-
stick. A button click alternates between the constants that are
modified and pushing the joystick up/down increases/decreases
the value of the current constant, as shown in Figure 7. Although
we could place the graph in the same program as the flexible
pointer, avoiding the mix of interaction technique and tweaking
code seemed reasonable, and we found it more advantageous to
run it in a separate program. In fact, the ease of distribution made
us place it on a separate machine, which gave us an exclusive
environment for developing the tweaking code, as shown in Fig-
ure 9. The behavior of our interaction technique can be modified
in real time as soon as the graph is connected to the flexible
pointer. More importantly, we can have the flexible pointer run-
ning constantly, while modifying, recompiling, and restarting the
tweaking code. When satisfied with the behavior of the interaction
technique, the tweaking code is removed, simply by not running
it. This example shows how we can use Unit to abstract the inter-
action techniques from the input devices and the application, and
also how two interaction techniques (the flexible pointer and the
tweaking code) can be abstracted from each other.

6 The Development of Interaction Techniques
Using Distributed Speech Recognition, Analy-
sis, and Localization

We found Unit very useful in a recent experimental setup for a
user interface based on speech analysis and audio localization
[Olwal and Feiner 2003b]. We intended to explore the use of non-
verbal features of the user’s speech for implicit or explicit pro-
gram control. Additionally, we planned to use multiple micro-
phones to approximate the user’s head position, by comparing the
audio from the different microphones.

Running CPU-intensive speech recognition on multiple
microphones
First, we needed a mechanism for getting input from multiple
microphones, so we considered the following approaches:

1) Using multiple general-purpose sound cards on one com-
puter. One would have to be careful to not run into hardware
conflicts, since an ordinary PC is not designed to have many
simultaneously active sound cards.

2) Using a special-purpose sound card with multiple audio in-
puts. One of these cards would be too expensive for our low-
budget experimental setup.

3) Using a special-purpose array microphone for audio localiza-
tion, where the signal processing is done in hardware. The
few such inexpensive consumer-level microphones we found
did not provide programming API access to inferred posi-
tional data. These microphones also put restrictions on the
setup, limited by the characteristics of the microphone, and
we found it neither feasible nor cost effective to build our
own microphone.

Second, speech recognition is CPU intensive, and running several
instances of speech recognition software on the same machine
used for the visualization would significantly affect the frame
rate.

A distributed approach
Realizing that we had many available machines in our lab,
equipped with standard sound cards, we decided to take advantage
of Unit’s distribution mechanism to offload the CPU-intensive
speech recognition to other machines on the network. Each of
these machines could then support one microphone, without the
need for any special-purpose hardware or alteration of the hard-
ware configuration.

Figure 10. The architecture for the experimental non-verbal speech
and audio localization setup.

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

We designed our Unit Graph such that the speech is analyzed
locally on each speech server, with the recognized speech and the
extracted speech features communicated over Ethernet to the ap-
plication server. The Unit dataflow in the application server fuses
the input and adjusts the behavior of the application accordingly.
Our experimental setup is shown in Figure 10.

It might sound contradictory that we find it more cost-efficient
and convenient to use a separate computer, instead of a special-
purpose sound card, to host a microphone. However, the impor-
tant point here is that Unit allowed us to use our currently avail-
able general-purpose hardware for rapid prototyping of an ex-
perimental user interface, without having to deal with the hard-
ware-related issues that would play a central role in designing a
practical product. While Unit made it possible to easily develop a
distributed dataflow for our purposes, its transparent distribution
mechanism also makes it straightforward and simple to reconfig-
ure the application to run on a single machine (e.g., with multiple
sound cards or a multi-input sound card).

7 Composite Input Devices
The Unit framework has made it easy for us to develop rudimen-
tary prototype input devices, assembled from arrangements of two
or more input devices. Figure 3 shows one of the simplest exam-
ples of a composite input device: a three–degree-of-freedom
mouse created from two off-the-shelf wireless optical mice that
are rigidly attached to provide an additional degree of freedom
(rotational acceleration in the plane of the surface on which they
are used). Unit provides simple means for specifying the relations
between the two mouse sensors, and thus allows the behavior of
this composite input device to be visually programmed, com-
pletely in software, as shown in Figure 11.

Unit thus makes it possible to build composite input devices that
consist of hierarchies of different input devices and interaction
techniques, while providing unified application-level APIs to
these devices.

8 Implementation
The Unit framework is implemented with Java and Java3D, and
therefore runs across multiple platforms. Unit’s current imple-
mentation supports conventional pointing devices (e.g., mice,
trackballs, touchpads, trackpoints, and touchscreens) and key-
boards, as well as several six–degree-of-freedom sensors (Ascen-
sion Flock of Birds, InterSense IS600 Mark 2 Plus, and InterSense
IS900) and speech recognition and speech synthesis (through the
Java Speech API and IBM ViaVoice). RMI is used for distribu-
tion over TCP/IP. We have used a heterogeneous machine pool
during development, with machines ranging from an Intel Celeron
400 MHz, with 192 MB RAM, running Windows 98, to a Dual
Intel Xeon 2.8 GHz, with 1 GB RAM, running Windows XP. The
low-end machines can be used for running Unit Graphs and input
device handling, while the more powerful machines with 3D ac-
celeration hardware are needed for 3D graphics.

9 Conclusions and Future Work
As we have showed, Unit allows the flexible specification of in-
teraction techniques, while effectively avoiding problems related
to specific hardware setups in experimental systems through a
peer-to-peer distribution mechanism. Besides abstracting interac-
tion techniques from input devices and applications, Unit’s modu-
larity has also proven convenient, since it allows debugging com-
ponents to be developed in a stand-alone fashion outside the inter-
action technique of interest.

Figure 11. Rotational acceleration can be extracted from two rigidly attached mice with this Unit Graph. The resulting unit (3DOF mouse) can
be interfaced as a “new” input device, providing three degrees of freedom. (Screenshot from the Unit UI.)

Olwal, A. and Feiner, S. Unit—Modular Development of Distributed Interaction Techniques for Highly Interactive User Interfaces. In Proceedings of GRAPHITE 2004 (Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia), Singapore, Singapore, June 15-18, 2004, p. 131-138.

While our framework is implemented in Java and Java3D, interac-
tive 3D graphics systems are more often developed in OpenGL
and C/C++ today. Therefore, to make our framework accessible
from a non-Java environment, we plan to write a C/C++ version
of the Unit base class to allow native code to communicate with,
and take advantage of, the Unit framework.

We intend to extend Unit’s interoperability by writing a bridge to
VRPN [VRPN 2003], which would provide the Unit framework
with support for an even wider range of trackers. Bindings to
other popular VR frameworks, such as CaveLib [CaveLib 2003]
and VRJuggler [VRJuggler 2003], are also of interest. We are
generally interested in adding more input and output options to
Unit, such as haptics, tablets, joysticks, audio/MIDI and phidgets
[Greenberg and Fitchett 2001]. Some of these can be achieved
with little effort by writing bindings for the abovementioned li-
braries.

The Unit UI also needs to be improved if it is to be able to support
the design process of increasingly complex Unit Graphs. Besides
missing functionality (e.g., copy/paste), we believe that visualiza-
tion approaches, such as encapsulation, explosion views, layers
and fisheye lenses, would be advantageous to the Unit UI. It
would also be useful to extend the visualization of the changing
data in the graphs, as well as the actual data flow.

Acknowledgments
This research was funded in part by Office of Naval Research
Contracts N00014-99-1-0249 and N00014-99-1-0394, NSF
Grants IIS-00-82961 and IIS-01-21239, and gifts from Intel, Mi-
crosoft Research, and Alias Systems.

References
ANSON, E. 1982. The Device Model of Interaction. Proc. SIG-

GRAPH ’82 (ACM Comp. Graph., 16(3), July 1982), Boston,
MA, July 26–30, 107–114.

BORNING, A. 1981. The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation Laboratory. ACM
Trans. on Prog. Langs. and Sys, 3(4), October 1981, 343–387.

BOWMAN, D., HODGES, L.F. 1997. An Evaluation of Techniques
for Grabbing and Manipulating Remote Objects in Immersive
Virtual Environments. Proc. Symp. on Interactive 3D Graph.,
35–38.

CAVELIB. 2003. http://www.vrco.com/products/cavelib/cavelib.html.
Virtual Realty Consulting (VRCO) Inc. Virginia Beach, VA.

DUCE, D., VAN LIERE, R., AND TEN HAGEN, P. 1990. An Approach
to Hierarchical Input Devices. Comp. Graph. Forum, 9(1), 15–
26.

DRAGICEVIC, P. AND FEKETE, J.D. 2001. Input Device Selection
andInteraction Configuration with ICON. Proc. IHM-HCI
2001. Frontiers, Lille, France, Springer Verlag, 543-448.

FIGUEROA, P., GREEN, M., HOOVER, H.J. 2002. InTml: A Descrip-
tion Language for VR Applications. Proc. 3D Web Technology.
53-58.

FITZMAURICE, G.W., ISHII, H., BUXTON, W. 1995. Bricks: Laying
the Foundations for Graspable User Interfaces. Proc. Human
Factors in Comp. Sys. (CHI '95), 442–449.

GREENBERG, S. AND FITCHETT, C. 2001. Phidgets: Easy Develop-
ment of Physical Interfaces Through Physical Widgets. Proc.
ACM Symp. on User Interface Software and Tech. (UIST ’01),
Orlando, FL, 2001, 209–218.

HINCKLEY, K. AND SINCLAIR, M. Touch-Sensing Input Devices.
1999. Proc. Conf. on Human Factors in Comp. Sys. (CHI ’99),
223–230.

KESSLER, G.D., KOOPER, R., VERLINDEN, J.C. AND HODGES, L.
1997. The Simple Virtual Environment Library, Version 2.0,
User's Guide, http://www.cc.gatech.edu/gvu/virtual/SVE/
docV2.0/sve.book_1.html. Technical Report, Graphics, Visuali-
zation, and Usability Center, Georgia Institute of Technology.

LANIER, J. GRIMAUD, J-J, HARVILL, Y., LASKO-HARVILL, A.,
BLANCHARD, C., OBERMAN, MARK., TEITEL, M. 1993. Method
and system for generating objects for a multi-person virtual
world using data flow networks. United States Patent 5588139.

LIANG, J., GREEN, M. 1994. JDCAD: A Highly Interactive 3D
Modeling System. Comp. and Graph., 18(4). 499–506.

MACKENZIE, I. S., SOUKOREFF, R. W., PAL, C. 1997. A Two-ball
Mouse Affords Three Degrees of Freedom. Extended Abstracts
of Human Factors in Comp. Sys. (CHI ’97), 303–304.

MALONEY, J. AND SMITH, R. 1995. Directness and Liveness in the
Morphic User Interface Construction Environment. Proc. ACM
Symp. on User Interface Software and Tech. (UIST ’95), Pitts-
burgh, PA, 1995, 21–28.

OLWAL, A. 2002. Unit—A Modular Framework for Interaction
Technique Design, Development and Implementation. MS The-
sis, Department of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden.

OLWAL, A AND FEINER, S. 2003a. The Flexible Pointer—An Inter-
action Technique for Selection in Augmented and Virtual Real-
ity. Conference Supplement of ACM Symp. on User Interface
Software and Tech. (UIST ’03), Vancouver, BC, 2003, 81–82.

OLWAL, A. AND FEINER S. 2003b. Using Prosodic Features of
Speech and Audio Localization in Graphical User Interfaces.
Technical Report CUCS-016-03, Department of Computer Sci-
ence, Columbia University, New York, NY.

RESNICK, M. 1993. Behavior Construction Kits. Communications
of the ACM, 36(7). 64–71.

SMITH, D.N. 1988. Building Interfaces Interactively. Proc. ACM
SIGGRAPH Symp. on User Interface Software, Banff, Alberta,
October 17–19, 1988, 144–151.

SUZUKI, H., KATO, H. 1993. AlgoBlock: A Tangible Programming
Language, A Tool for Collaborative Learning. Proc. 4th Euro-
pean Logo Conf., August 1993, 297–303.

UNGAR, D. AND SMITH, R. 1987. Self: The Power of Simplicity.
Proc. OOPSLA ’87, Orlando, FL, October 1987, 227–241.

VRJUGGLER. 2003. http://www.vrjuggler.org/. Virtual Reality Ap-
plications Center, Iowa State University, Ames, IA.

VRPN. 2003. http://www.cs.unc.edu/Research/vrpn/. Department of
Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC.

ZELEZNIK, R. C., HERNDON, K. P, ROBBINS, D. C., HUANG, N.,
MEYER, T., PARKER, N., HUGHES, J.F. 1993. An Interactive 3D
Toolkit for Constructing 3D Widgets. Proc. SIGGRAPH '93,
81–84.

