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Figure 1. The Unit User Interface, dis-
playing the Unit Graph that specifies the 
interaction for the three–degree-of-
freedom mouse.  

Figure 2. The flexible pointer selecting an 
obscured object, without visually interfering 
with the occluding object. 

Figure 3. The 3DOF mouse, a simple com-
posite input device consisting of two wireless 
optical mice. A Unit Graph extracts the rota-
tional acceleration in the plane of the surface. 

 
Abstract 
The Unit framework uses a dataflow programming language to 
describe interaction techniques for highly interactive environ-
ments, such as augmented, mixed, and virtual reality. Unit places 
interaction techniques in an abstraction layer between the input 
devices and the application, which allows the application devel-
oper to separate application functionality from interaction tech-
niques and behavior. 

Unit's modular approach leads to the design of reusable applica-
tion-independent interaction control components, portions of 
which can be distributed across different machines. Unit makes it 
possible at run time to experiment with interaction technique be-
havior, as well as to switch among different input device configu-
rations. We provide both a visual interface and a programming 
API for the specification of the dataflow. To demonstrate how 
Unit works and to show the benefits to the interaction design 
process, we describe a few interaction techniques implemented 
using Unit. We also show how Unit’s distribution mechanism can 
offload CPU intensive operations, as well as avoid costly special-
purpose hardware in experimental setups. 

C.R Categories and Subject Descriptors: D.1.7 Visual Pro-
gramming; D.2.2 Design Tools and Techniques—User Interfaces; 
D.2.6 Programming Environments—Graphical environments; 
D.3.2 Language Classifications—Data-flow languages; H.3.4 
Systems and Software—Distributed Systems; H.5.1 Multimedia 
Information Systems—Artificial, augmented, and virtual realities; 
H.5.2 User Interfaces—Graphical user interfaces (GUI), Input 
devices and strategy, prototyping;  I.3.4 Graphics Utilities—
Virtual device interfaces 

Keywords: interaction techniques, dataflow programming, visual 
programming, augmented reality, mixed reality, virtual reality. 

1 Introduction 
Despite tremendous improvements in computer systems over the 
past several decades, designing and developing interaction tech-
niques is still a difficult task, especially for highly interactive 
immersive 3D environments, such as Augmented Reality (AR), 
Mixed Reality (MR) and Virtual Reality (VR). Interaction in im-
mersive environments involves many different types of user input 
and many devices with which that input is provided, such as posi-
tion and orientation trackers, voice input, and haptic devices, in 
addition to conventional mice, trackballs, touch screens, and key-
boards. While there is an increasing number of well-known meta-
phors for immersive interaction, such as “the virtual hand” 
[Bowman and Hodges 1997], “ray pointer” [Bowman and Hodges 
1997], and “flashlight pointer” [Liang and Green 1993], there is 
still much variation in how these metaphors are implemented.  

Interaction techniques involve the mapping of data from input 
devices to application semantics. Therefore, we find it particularly 
attractive to use a dataflow approach to the design of interaction 
techniques, in which data is processed through a customizable 
network. We introduce the Unit framework [Olwal 2002], which 
allows users to specify 2D and 3D interaction techniques as data-
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flows and to modify them in running programs. We use our 
framework to abstract interaction techniques from applications 
that use them, as well as from input devices that control them. 
This allows users to flexibly configure and dynamically change 
interaction technique behavior, independent of both input devices 
and applications. Furthermore, in our framework, a dataflow can 
be easily distributed over multiple machines to create distributed 
interaction techniques, as well as distributed applications. As 
shown in Figure 1, we use a direct-manipulation, visual-
programming representation to specify the behavior of the data-
flow in the Unit User Interface (Unit UI), which is itself imple-
mented with Unit. 

In the remainder of this paper, we first present related work in 
Section 2, followed by brief introductions to the Unit framework 
and the prototype Unit UI in Sections 3 and 4. To explain how 
Unit can be used, we describe some example interaction tech-
niques that we have developed with it in Sections 5, 6 and 7: a 
novel flexible pointer for selecting objects in 3D environments 
(Figure 2) [Olwal and Feiner 2003a], an experimental setup for 
analyzing non-verbal features of speech [Olwal and Feiner 
2003b], and a quickly prototyped rotationally sensitive mouse 
(Figure 3), created from a pair of conventional mice. We describe 
our implementation in Section 8, and present our conclusions and 
future work in Section 9. 

2 Related Work 
Data flow programming and directed-graph–based visual pro-
gramming languages have been used together by a number of 
researchers to design 2D UIs and interaction techniques.  Projects 
that take this approach have included Smith’s InterCONS [Smith 
1988], Borning’s ThingLab [Borning 1981], and Maloney and 
Smith’s Morphic user interface framework [Maloney and Smith 
1995] for Self [Ungar and Smith 1987]. A key issue here is the 
recognition that interaction techniques essentially map the outputs 
(and inputs) of interaction devices to the inputs (and outputs) of 
applications; this observation has long been an underlying theme 
of work on building formal models of abstract graphical input 
devices, which in turn can be composed together in graphs to 
create hierarchical input devices [Anson 1982, Duce et al. 1990]. 

Most 3D interaction techniques can be conceptualized this way, 
and 3D toolkits that embody these techniques (e.g., [Kessler et al. 
1997, CaveLib 2003, VRJuggler 2003, VRPN 2003]) typically 

use abstract input devices. We have chosen to abstract the interac-
tion technique components in a similar fashion to BodyElectric 
[Lanier et al. 1993], ICON [Dragicevic and Fekete 2001] and 
InTml [Figueroa et al. 2002]. (See Figure 4.) As in these systems, 
our components are dataflow graphs, which are assembled into 
customized interaction techniques. In contrast to InTml, whose 
developers emphasize their XML-based specification language, 
we have chosen to focus on an interactive design process in which 
interaction techniques can be modified at runtime. We have also 
been more concerned with design issues that are typical for highly 
interactive distributed environments, such as AR/MR/VR, which 
distinguishes our framework from systems targeted for a user on a 
single computer, such as ICON. While BodyElectric also ad-
dressed 3D virtual environments, its dataflow operated on only a 
single machine (a Macintosh that controlled one or more SGI 
workstations). In contrast, Unit's dataflow graphs can be spread 
across multiple machines. 

Our approach allows the development of flexible interaction tech-
niques, portions of which can be distributed, as well as replaced 
and remapped at runtime, and we provide a user interface for 
visual dataflow programming of these behaviors, as well as a 
programming API. While the direct-manipulation creation of 3D 
widgets is an appealing approach [Zeleznik et al. 1993], we have 

 

Figure 4. a) Traditional input device interface for an interactive application. Input devices are mapped to functionality on the application 
level, making it hard to change devices and behavior. b) Unit places interaction techniques in an abstraction layer between input devices 
and the application. This layer can be changed for different combinations of interaction devices and behavior. c) Unit’s modularity also 
makes it possible to abstract interaction techniques from each other. 

         

Figure 5. Two units with two connected properties in the Unit UI. 
As the text property changes, the width field of the dimension 
property of the label is updated. 
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chosen a dataflow language for its clear depiction of the mapping 
between device outputs and application inputs. While our work on 
Unit primarily applies this approach to the design of experimental 
3D interaction techniques, we also believe it is of significant rele-
vance to the design of new input devices (e.g., [Fitzmaurice et al. 
1995, Greenberg and Fitchett 2001, Suzuki and Kato 1993, 
MacKenzie et al. 1997, Resnick 1993, Hinckley and Sinclair 
1999]). 

3 The Unit Framework 
The Unit framework uses the concept of units to represent the 
nodes in the data flow. Each unit has any number of properties 
and any number of connections to properties in other units, as 
shown in Figure 5. Two units with two connected properties in the 
Unit UI. As the text property changes, the width field of the di-
mension property of the label is updated.. When a property is 
updated, a special method is called, which by default updates all 
connected properties. Customized units typically override this 
method with their own data processing, and when done, typically 
redirect to the default method. These connections can also be 
made over the network, allowing each unit in the dataflow to be 
able to share its properties and listen to property changes, any-
where on the network. 

These simple rules allow the design of flexible and customizable 
units that specify the desired behavior through their combination 
into Unit Graphs, much like electrical circuits. 

Units 
As mentioned above, the key components of a unit are its proper-
ties and the ability to maintain and update connections to proper-
ties in other units.  

Properties 
Properties are attribute-value pairs, in which the value can be a 
pointer to any Java Object. 

Connections 
Connectivity is peer-to-peer, where only the involved units are 
aware of their connections and are solely responsible for adminis-
tering their relationships. Connections between two units are typi-
cally accomplished by reference, with the data pointer of the 
source property initially copied to the target property. When an 
update is made, the target unit is notified that the data has 
changed. We also provide the ability to make connections by 
value, in which each update replicates the data in the source unit; 
however, connections by reference are typically preferred for 
efficiency. In addition, connections can be created through a chain 
of references to fields and methods in the property value, provided 
that the resulting source and target values are of the same data 
type. These references are more expensive, since they require 
dereferencing, evaluation, and replication.  

Figure 6 shows a simple example in which two mice are used to 
provide six–degree-of-freedom control of an application. 

 

 
 
Figure 6. A screenshot from the Unit UI, in which a dataflow graph is being specified for direct control of six degrees of freedom through 
the use of two mice. (We use the scroll wheel to provide a third degree of freedom from each mouse.) 
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Distribution 
Connections can be transparently distributed over Java Remote 
Method Invocation (RMI), with the addition of the hostname in 
the specification of the connection. Following the peer-to-peer 
approach, each unit is individually distributed through the RMI 
registry and directly accessible to other units. 

This distribution approach allows parts of Unit Graphs to be dis-
tributed over an arbitrary number of applications running on an 
arbitrary number of machines. A common problem in immersive 
environments is the use of hardware, such as six–degree-of-
freedom trackers, that have a permanent physical connection to a 
single machine. Unit not only allows cross-platform access to 
platform-specific devices, but also simplifies the sharing of ma-
chine-specific devices. Our framework allows several Unit 
Graphs, running on different machines or within different pro-
grams on the same machine, to communicate as a single graph, 
providing transparent access to data and flow control from any-
where.  

Core components 
Unit, the core class, which is the superclass of all units, provides 
the general unit functionality, which most importantly is the han-
dling of properties, connections, and distribution. Two units are 
connected by specifying the source unit, source property, target 
unit, and target property, and an optional host name for remote 
connections.  

 

We have also implemented a set of core units that provide addi-
tional functionality. These include units for flow control, such as 
switches and multiplexers, units for scalar and vector operations, 
and units for I/O (multiple mice, keyboards, six–degree-of-
freedom sensors, and speech recognition/synthesis).  

The units are arranged in a class hierarchy under the Unit super-
class. It is easy to implement new units, which typically involves 
overriding the changeProperty method that is called on every 
property update. Most core units have a set of reserved property 
names that are used for their specific input and output properties.  

4 The Unit User Interface 
We created the Unit UI, shown in Figures 6 and 7, as a comple-
ment to our programming API, to allow users to design, manipu-
late, and visualize the dataflow in a Unit Graph.  

The Unit UI lets the user add, modify and delete units, properties 
and connections, as well as load and save Unit Graphs. Besides 
visually displaying the dataflow as directed graphs with units, 
properties and connections, live data propagation is visualized by 
highlighting a property for a short time after it is updated. The 
user can also switch to live views of values of interest. 

The Unit UI was implemented with units, using the same dataflow 
approach as the interaction techniques it manipulates—
demonstrating that our framework does not restrict itself to inter-
action technique specification, but also applies to traditional ap-
plication logic. The Unit UI is a 3D application, and can thus 

 

 
 
Figure 7. The dataflow for the tweaking code that manipulates parameters in the flexible pointer through a mouse with a thumb-controlled 
joystick. Clicking the second mouse button alternates the parameter to be modified, while the movement of the joystick changes the value. 
The result is accessible in the unit named “parameters” at the bottom, which is remotely connected to the graph for the flexible pointer. 
(Screenshot from the Unit UI.) 
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coexist in the immersive environment, side-by-side with the inter-
action techniques whose behavior it controls.  

However, because of the limited field-of-view and low (800×600) 
resolution of our head-worn displays, we find it more productive 
to interact with the Unit UI in 2.5D on high-resolution 
(1920×1200) 24” desktop displays. In the following sections, we 
describe our experience with Unit by presenting some of the ex-
perimental interaction techniques that we have developed with it. 

5 The Design of an Interaction Technique for  
Immersive Environments 

We have implemented a novel interaction technique, called the 
Flexible Pointer [Olwal and Feiner 2003a], which is an extension 
of existing ray-casting techniques for selection in immersive envi-
ronments. The flexible pointer allows the user to point around 
objects, with a curved arrow, for selection of fully or partially 
obscured objects, as well as to more clearly point out objects of 

interest to other users in a collaborative environment. The flexible 
pointer, shown in Figure 8, reduces ambiguity by avoiding ob-
scuring objects, which would have been selected with traditional 
ray-casting techniques. The flexible pointer also has a visual ad-
vantage in situations in which it is easy to point out an object, 
without obstructing the object of interest, while still providing a 
continuous line from the user to the target. 

The problems that we address with the Unit framework are how 
users can control the pointer, and how we can interactively mod-
ify and tweak this mapping, at runtime and during the design 
phase. 

Implementation 
First, we have to decide on a representation for the geometry of 
the flexible pointer. We choose a Quadratic Bézier spline, where 
position, length, and curvature of the pointer are controlled by 
three points in space.  

 
Figure 8. The flexible pointer interaction technique provides easier selection and clearer indicative pointing in collaborative environments, 
in addition to the ability to select fully or partially obscured objects. 

 
 

Figure 9. Overview of the flexible pointer interaction technique during the design phase. From right to left: The application 
implements the geometry for a Bézier curve pointer and uses a distributed unit to listen to changes in its properties. The Unit UI is run on a 
second computer on the network. The graph manipulated by the Unit UI outputs the three parameters to the Bézier curve, while taking the five 
curve parameters as input. Two six–degree-of-freedom trackers provide the position properties and length, and the curvature characteristics 
are derived from their orientation. The behavior of the flexible pointer can be tweaked by a graph that lets the user manually adjust the 
constants with a mouse-compatible device. Interaction technique abstraction occurs at several stages here, most clearly between the applica-
tion, the Unit UI, and the sensors. 
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Secondly, we implement a corresponding, customized unit that 
listens to changes in its position, end point, and control point 
properties, and updates the geometry accordingly. We now have a 
mechanism for listening to, and updating the values of this unit, 
both locally and over the network. Any component in our frame-
work is thus able to listen to changes or update the geometry of 
the pointer, by accessing these properties. For increased precision, 
our prototype flexible pointer utilizes a two-handed approach, 
where the hands are tracked with two six–degree-of-freedom 
trackers, the distance between the hands map to the length of the 
pointer, and the relative bending of the hands determines the cur-
vature characteristics of the pointer. We implement this control 
behavior as a separate Unit Graph that updates the properties of 
the above-mentioned unit that is controlling the geometry.  

Design process 
One of the hardest tasks in interaction technique design is the 
assignment of appropriate values to constants, and as with most 
interaction techniques, there are several such constants for the 
flexible pointer (e.g., the scale factor for the mapping of the dis-
tance between the user’s hands to the length of the pointer). 

Thanks to Unit’s modularity, separate Unit Graphs can be used for 
interactive tweaking and debugging of the running interactive 
technique. We constructed a new graph that takes input from a 
small handheld presentation mouse with a thumb-controlled joy-
stick. A button click alternates between the constants that are 
modified and pushing the joystick up/down increases/decreases 
the value of the current constant, as shown in Figure 7. Although 
we could place the graph in the same program as the flexible 
pointer, avoiding the mix of interaction technique and tweaking 
code seemed reasonable, and we found it more advantageous to 
run it in a separate program. In fact, the ease of distribution made 
us place it on a separate machine, which gave us an exclusive 
environment for developing the tweaking code, as shown in Fig-
ure 9. The behavior of our interaction technique can be modified 
in real time as soon as the graph is connected to the flexible 
pointer. More importantly, we can have the flexible pointer run-
ning constantly, while modifying, recompiling, and restarting the 
tweaking code. When satisfied with the behavior of the interaction 
technique, the tweaking code is removed, simply by not running 
it. This example shows how we can use Unit to abstract the inter-
action techniques from the input devices and the application, and 
also how two interaction techniques (the flexible pointer and the 
tweaking code) can be abstracted from each other. 

6 The Development of Interaction Techniques 
Using Distributed Speech Recognition, Analy-
sis, and Localization 

We found Unit very useful in a recent experimental setup for a 
user interface based on speech analysis and audio localization 
[Olwal and Feiner 2003b]. We intended to explore the use of non-
verbal features of the user’s speech for implicit or explicit pro-
gram control. Additionally, we planned to use multiple micro-
phones to approximate the user’s head position, by comparing the 
audio from the different microphones. 

Running CPU-intensive speech recognition on multiple 
microphones 
First, we needed a mechanism for getting input from multiple 
microphones, so we considered the following approaches: 

1) Using multiple general-purpose sound cards on one com-
puter. One would have to be careful to not run into hardware 
conflicts, since an ordinary PC is not designed to have many 
simultaneously active sound cards. 

2) Using a special-purpose sound card with multiple audio in-
puts. One of these cards would be too expensive for our low-
budget experimental setup.  

3) Using a special-purpose array microphone for audio localiza-
tion, where the signal processing is done in hardware. The 
few such inexpensive consumer-level microphones we found 
did not provide programming API access to inferred posi-
tional data. These microphones also put restrictions on the 
setup, limited by the characteristics of the microphone, and 
we found it neither feasible nor cost effective to build our 
own microphone. 

Second, speech recognition is CPU intensive, and running several 
instances of speech recognition software on the same machine 
used for the visualization would significantly affect the frame 
rate. 

A distributed approach 
Realizing that we had many available machines in our lab, 
equipped with standard sound cards, we decided to take advantage 
of Unit’s distribution mechanism to offload the CPU-intensive 
speech recognition to other machines on the network. Each of 
these machines could then support one microphone, without the 
need for any special-purpose hardware or alteration of the hard-
ware configuration.  

 

Figure 10. The architecture for the experimental non-verbal speech 
and audio localization setup.
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We designed our Unit Graph such that the speech is analyzed 
locally on each speech server, with the recognized speech and the 
extracted speech features communicated over Ethernet to the ap-
plication server. The Unit dataflow in the application server fuses 
the input and adjusts the behavior of the application accordingly. 
Our experimental setup is shown in Figure 10. 

It might sound contradictory that we find it more cost-efficient 
and convenient to use a separate computer, instead of a special-
purpose sound card, to host a microphone. However, the impor-
tant point here is that Unit allowed us to use our currently avail-
able general-purpose hardware for rapid prototyping of an ex-
perimental user interface, without having to deal with the hard-
ware-related issues that would play a central role in designing a 
practical product. While Unit made it possible to easily develop a 
distributed dataflow for our purposes, its transparent distribution 
mechanism also makes it straightforward and simple to reconfig-
ure the application to run on a single machine (e.g., with multiple 
sound cards or a multi-input sound card). 

7 Composite Input Devices 
The Unit framework has made it easy for us to develop rudimen-
tary prototype input devices, assembled from arrangements of two 
or more input devices. Figure 3 shows one of the simplest exam-
ples of a composite input device: a three–degree-of-freedom 
mouse created from two off-the-shelf wireless optical mice that 
are rigidly attached to provide an additional degree of freedom 
(rotational acceleration in the plane of the surface on which they 
are used). Unit provides simple means for specifying the relations 
between the two mouse sensors, and thus allows the behavior of 
this composite input device to be visually programmed, com-
pletely in software, as shown in Figure 11. 

Unit thus makes it possible to build composite input devices that 
consist of hierarchies of different input devices and interaction 
techniques, while providing unified application-level APIs to 
these devices.  

8 Implementation 
The Unit framework is implemented with Java and Java3D, and 
therefore runs across multiple platforms. Unit’s current imple-
mentation supports conventional pointing devices (e.g., mice, 
trackballs, touchpads, trackpoints, and touchscreens) and key-
boards, as well as several six–degree-of-freedom sensors (Ascen-
sion Flock of Birds, InterSense IS600 Mark 2 Plus, and InterSense 
IS900) and speech recognition and speech synthesis (through the 
Java Speech API and IBM ViaVoice). RMI is used for distribu-
tion over TCP/IP. We have used a heterogeneous machine pool 
during development, with machines ranging from an Intel Celeron 
400 MHz, with 192 MB RAM, running Windows 98, to a Dual 
Intel Xeon 2.8 GHz, with 1 GB RAM, running Windows XP. The 
low-end machines can be used for running Unit Graphs and input 
device handling, while the more powerful machines with 3D ac-
celeration hardware are needed for 3D graphics. 

9 Conclusions and Future Work 
As we have showed, Unit allows the flexible specification of in-
teraction techniques, while effectively avoiding problems related 
to specific hardware setups in experimental systems through a 
peer-to-peer distribution mechanism. Besides abstracting interac-
tion techniques from input devices and applications, Unit’s modu-
larity has also proven convenient, since it allows debugging com-
ponents to be developed in a stand-alone fashion outside the inter-
action technique of interest. 

 
Figure 11. Rotational acceleration can be extracted from two rigidly attached mice with this Unit Graph. The resulting unit (3DOF mouse) can 
be interfaced as a “new” input device, providing three degrees of freedom. (Screenshot from the Unit UI.) 
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While our framework is implemented in Java and Java3D, interac-
tive 3D graphics systems are more often developed in OpenGL 
and C/C++ today. Therefore, to make our framework accessible 
from a non-Java environment, we plan to write a C/C++ version 
of the Unit base class to allow native code to communicate with, 
and take advantage of, the Unit framework.  

We intend to extend Unit’s interoperability by writing a bridge to 
VRPN [VRPN 2003], which would provide the Unit framework 
with support for an even wider range of trackers. Bindings to 
other popular VR frameworks, such as CaveLib [CaveLib 2003] 
and VRJuggler [VRJuggler 2003], are also of interest. We are 
generally interested in adding more input and output options to 
Unit, such as haptics, tablets, joysticks, audio/MIDI and phidgets 
[Greenberg and Fitchett 2001]. Some of these can be achieved 
with little effort by writing bindings for the abovementioned li-
braries.  

The Unit UI also needs to be improved if it is to be able to support 
the design process of increasingly complex Unit Graphs. Besides 
missing functionality (e.g., copy/paste), we believe that visualiza-
tion approaches, such as encapsulation, explosion views, layers 
and fisheye lenses, would be advantageous to the Unit UI. It 
would also be useful to extend the visualization of the changing 
data in the graphs, as well as the actual data flow. 

Acknowledgments 
This research was funded in part by Office of Naval Research 
Contracts N00014-99-1-0249 and N00014-99-1-0394, NSF 
Grants IIS-00-82961 and IIS-01-21239, and gifts from Intel, Mi-
crosoft Research, and Alias Systems. 

References 
ANSON, E. 1982. The Device Model of Interaction. Proc. SIG-

GRAPH ’82 (ACM Comp. Graph., 16(3), July 1982), Boston, 
MA, July 26–30, 107–114. 

BORNING, A.  1981. The Programming Language Aspects of 
ThingLab, a Constraint-Oriented Simulation Laboratory. ACM 
Trans. on Prog. Langs. and Sys, 3(4), October 1981, 343–387. 

BOWMAN, D., HODGES, L.F. 1997. An Evaluation of Techniques 
for Grabbing and Manipulating Remote Objects in Immersive 
Virtual Environments. Proc. Symp. on Interactive 3D Graph., 
35–38. 

CAVELIB. 2003. http://www.vrco.com/products/cavelib/cavelib.html. 
Virtual Realty Consulting (VRCO) Inc. Virginia Beach, VA. 

DUCE, D., VAN LIERE, R., AND TEN HAGEN, P. 1990. An Approach 
to Hierarchical Input Devices. Comp. Graph. Forum, 9(1), 15–
26.  

DRAGICEVIC, P. AND FEKETE, J.D. 2001. Input Device Selection 
andInteraction Configuration with ICON. Proc. IHM-HCI 
2001. Frontiers, Lille, France, Springer Verlag, 543-448.  

FIGUEROA, P., GREEN, M., HOOVER, H.J. 2002. InTml: A Descrip-
tion Language for VR Applications. Proc. 3D Web Technology. 
53-58.  

FITZMAURICE, G.W., ISHII, H., BUXTON, W. 1995. Bricks: Laying 
the Foundations for Graspable User Interfaces. Proc. Human 
Factors in Comp. Sys. (CHI '95), 442–449.  

GREENBERG, S. AND FITCHETT, C. 2001. Phidgets: Easy Develop-
ment of Physical Interfaces Through Physical Widgets. Proc. 
ACM Symp. on User Interface Software and Tech. (UIST ’01), 
Orlando, FL, 2001, 209–218. 

HINCKLEY, K. AND SINCLAIR, M. Touch-Sensing Input Devices. 
1999. Proc. Conf. on Human Factors in Comp. Sys. (CHI ’99), 
223–230. 

KESSLER, G.D., KOOPER, R., VERLINDEN, J.C. AND HODGES, L.  
1997. The Simple Virtual Environment Library, Version 2.0, 
User's Guide, http://www.cc.gatech.edu/gvu/virtual/SVE/ 
docV2.0/sve.book_1.html. Technical Report, Graphics, Visuali-
zation, and Usability Center, Georgia Institute of Technology. 

LANIER, J. GRIMAUD, J-J, HARVILL, Y., LASKO-HARVILL, A., 
BLANCHARD, C., OBERMAN, MARK., TEITEL, M. 1993. Method 
and system for generating objects for a multi-person virtual 
world using data flow networks. United States Patent 5588139.  

LIANG, J., GREEN, M. 1994. JDCAD: A Highly Interactive 3D 
Modeling System. Comp. and Graph., 18(4). 499–506.  

MACKENZIE, I. S., SOUKOREFF, R. W., PAL, C. 1997. A Two-ball 
Mouse Affords Three Degrees of Freedom. Extended Abstracts 
of Human Factors in Comp. Sys. (CHI ’97), 303–304.  

MALONEY, J. AND SMITH, R. 1995. Directness and Liveness in the 
Morphic User Interface Construction Environment. Proc. ACM 
Symp. on User Interface Software and Tech. (UIST ’95), Pitts-
burgh, PA, 1995, 21–28. 

OLWAL, A. 2002. Unit—A Modular Framework for Interaction 
Technique Design, Development and Implementation. MS The-
sis, Department of Numerical Analysis and Computer Science, 
Royal Institute of Technology, Stockholm, Sweden. 

OLWAL, A AND FEINER, S. 2003a. The Flexible Pointer—An Inter-
action Technique for Selection in Augmented and Virtual Real-
ity. Conference Supplement of ACM Symp. on User Interface 
Software and Tech. (UIST ’03), Vancouver, BC, 2003, 81–82. 

OLWAL, A. AND FEINER S. 2003b. Using Prosodic Features of 
Speech and Audio Localization in Graphical User Interfaces. 
Technical Report CUCS-016-03, Department of Computer Sci-
ence, Columbia University, New York, NY. 

RESNICK, M. 1993. Behavior Construction Kits. Communications 
of the ACM, 36(7). 64–71.  

SMITH, D.N. 1988. Building Interfaces Interactively. Proc. ACM 
SIGGRAPH Symp. on User Interface Software, Banff, Alberta,  
October 17–19, 1988, 144–151. 

SUZUKI, H., KATO, H. 1993. AlgoBlock: A Tangible Programming 
Language, A Tool for Collaborative Learning. Proc. 4th Euro-
pean Logo Conf., August 1993, 297–303. 

UNGAR, D. AND SMITH, R. 1987. Self: The Power of Simplicity. 
Proc. OOPSLA ’87, Orlando, FL, October 1987, 227–241. 

VRJUGGLER. 2003. http://www.vrjuggler.org/. Virtual Reality Ap-
plications Center, Iowa State University, Ames, IA. 

VRPN. 2003. http://www.cs.unc.edu/Research/vrpn/. Department of 
Computer Science, University of North Carolina at Chapel Hill, 
Chapel Hill, NC. 

ZELEZNIK, R. C., HERNDON, K. P, ROBBINS, D. C., HUANG, N., 
MEYER, T., PARKER, N., HUGHES, J.F. 1993. An Interactive 3D 
Toolkit for Constructing 3D Widgets. Proc. SIGGRAPH '93, 
81–84.  


