
InstructPipe: Generating Visual Blocks Pipelines with Human
Instructions and LLMs

Zhongyi Zhou
Google

Tokyo, Japan
The University of Tokyo

Tokyo, Japan
zhongyi.zhou.work@gmail.com

Jing Jin
Google

Mountain View, CA, USA
jingjin@google.com

Vrushank Phadnis
Google

Mountain View, CA, USA
vrushankphadnis@gmail.com

Xiuxiu Yuan
Google

Mountain View, CA, USA
xiuxiuyuan@google.com

Jun Jiang
Google

Sunnyvale, CA, USA
junjiang@google.com

Xun Qian
Google

Mountain View, CA, USA
xunqian@google.com

Kristen Wright
Google

Mountain View, CA, USA
kristenwright@google.com

Mark Sherwood
Google

Mountain View, CA, USA
marksherwood@google.com

Jason Mayes
Google

Mountain View, CA, USA
jasonmayes@google.com

Jingtao Zhou
Google

Mountain View, CA, USA
jingtaozhou@google.com

Yiyi Huang
Google

Sunnyvale, CA, USA
yiyih@google.com

Zheng Xu
Google

Seattle, WA, USA
xuzheng@google.com

Yinda Zhang
Google

Mountain View, CA, USA
yindaz@google.com

Johnny Lee
Google

Redmond, WA, USA
johnnylee@google.com

Alex Olwal
Google

Mountain View, CA, USA
olwal@acm.org

David Kim
Google

Zurich, Switzerland
kidavid@google.com

Ram Iyengar
Google

Mountain View, CA, USA
tenheadedram@gmail.com

Na Li
Google

Palo Alto, CA, USA
linazhao@google.com

Ruofei Du∗
Google

San Francisco, CA, USA
ruofei@google.com

Node 1 Node 2

Node 4

Node 3

Node N... ...

Visual Blocks
InstructPipe

Describe the pipeline you want:

Tag:

Submit

Multimodal

Describe the emotion of a person in one
image using emoji and show this emoji on
the user's face in the webcam.

Generated

Pipeline

LLM ModuleIntermediate Data

Pseudocode
Input

...

Output

...

Processor

...

Node

Selector

Code
Writer

Code Interpreter

Figure 1: Workfow of InstructPipe. First, users describe their desired pipeline in natural language and designate it with a
language, image, or multi-modal tag. InstructPipe then feeds user instructions into a node selector to identify a relevant set
of nodes. Subsequently, both the instructions and the relevant nodes with their description are input into a code writer to
produce pseudocode. Finally, a code interpreter parses the pseudocode, rectifes errors, and compiles a JSON-formatted pipeline,
allowing users to refne and interact with it further within Visual Blocks’s node-graph editor.

∗Corresponding author: me [at] duruofei [dot] com; Also contact: zhongyi.zhou.work
[at] gmail [dot] com

© 2025 Copyright held by the owner/author(s).
This work is licensed under a Creative Commons Attribution 4.0 International License. ACM ISBN 979-8-4007-1394-1/25/04
CHI ’25, Yokohama, Japan https://doi.org/10.1145/3706598.3713905

1

https://orcid.org/0000-0002-1363-7313
https://orcid.org/0000-0002-4734-7058
https://orcid.org/0000-0001-6526-0848
https://orcid.org/0000-0002-9341-993X
https://orcid.org/0009-0000-4814-6912
https://orcid.org/0000-0003-1976-7992
https://orcid.org/0009-0003-7841-0085
https://orcid.org/0009-0003-4577-128X
https://orcid.org/0009-0002-0660-828X
https://orcid.org/0009-0005-8041-8179
https://orcid.org/0009-0001-8941-8061
https://orcid.org/0009-0003-6747-3953
https://orcid.org/0000-0001-5386-8872
https://orcid.org/0009-0007-3084-4553
https://orcid.org/0000-0001-7772-0530
https://orcid.org/0000-0002-0508-3509
https://orcid.org/0000-0002-6596-8907
https://orcid.org/0000-0002-9370-1353
https://orcid.org/0000-0003-2471-9776
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713905
mailto:kidavid@google.com
mailto:xuzheng@google.com
mailto:marksherwood@google.com
mailto:xiuxiuyuan@google.com
mailto:olwal@acm.org
mailto:yiyih@google.com
mailto:kristenwright@google.com
mailto:vrushankphadnis@gmail.com
mailto:johnnylee@google.com
mailto:jingtaozhou@google.com
mailto:xunqian@google.com
mailto:jingjin@google.com
mailto:yindaz@google.com
mailto:jasonmayes@google.com
mailto:junjiang@google.com
mailto:zhongyi.zhou.work@gmail.com

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Abstract
Visual programming has the potential of providing novice program-
mers with a low-code experience to build customized processing
pipelines. Existing systems typically require users to build pipelines
from scratch, implying that novice users are expected to set up and
link appropriate nodes from a blank workspace. In this paper, we
introduce InstructPipe, an AI assistant for prototyping machine
learning (ML) pipelines with text instructions. We contribute two
large language model (LLM) modules and a code interpreter as
part of our framework. The LLM modules generate pseudocode
for a target pipeline, and the interpreter renders the pipeline in
the node-graph editor for further human-AI collaboration. Both
technical and user evaluation (N=16) shows that InstructPipe
empowers users to streamline their ML pipeline workfow, reduce
their learning curve, and leverage open-ended commands to spark
innovative ideas.

CCS Concepts
• Computing methodologies → Visual analytics; Machine
learning; • Software and its engineering → Visual languages.

Keywords
Visual Programming; Large Language Models; Visual Prototyping;
Node-graph Editor; Graph Compiler; Low-code Development; Deep
Neural Networks; Deep Learning; Visual Analytics

ACM Reference Format:
Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu Yuan, Jun Jiang, Xun Qian,
Kristen Wright, Mark Sherwood, Jason Mayes, Jingtao Zhou, Yiyi Huang,
Zheng Xu, Yinda Zhang, Johnny Lee, Alex Olwal, David Kim, Ram Iyengar,
Na Li, and Ruofei Du. 2025. InstructPipe: Generating Visual Blocks Pipelines
with Human Instructions and LLMs. In CHI Conference on Human Factors in
Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM,
New York, NY, USA, 22 pages. https://doi.org/10.1145/3706598.3713905

1 Introduction
A visual programming interface provides users with a node-graph
editor to program through interaction with visual elements. As
opposed to writing code in a code editor, the node graph allows
users to design pipelines by confguring nodes and connecting them
with edges in a visual workspace. This alternative user interface
approach often accelerates experimentation and exploration in
the prototyping phases of creative applications, and can make
advanced technology more accessible to beginners. Advances
in machine learning (ML) further stimulate growing interest in
visual programming. Open-source ML hubs (e.g., TF-Hub [1],
PyTorch-Hub [57], and Hugging Face [83]) contribute large
numbers of encapsulated modules that accelerate AI project
development and experimentation, and such libraries provide
important resources for an ML-based visual programming platform.
Recent advancements in large language models (LLMs) [3, 8, 77]
and fndings on Chain-of-Thought [81] have further stimulated
community-wide interest in visual programming [4, 19, 84, 86],
suggesting further potential in the interactive exploration of AI
chains.

Despite the development of visual programming platforms in
various domains, we observed that existing systems share one

similar characteristic: users usually initiate a creative process in the
workspace “from scratch”. This implies that users need to 1) select
nodes, 2) ideate the pipeline structure, and fnally, 3) connect nodes
within a completely empty workspace. As was also highlighted in
existing literature in programming tools [92, 95], such processes
can easily overwhelm users, especially those who are unfamiliar
with a particular visual programming platform. Providing pipeline
templates may reduce on-boarding eforts [9, 21], but the templates
inherently lack fexibility and are not easily adaptable to users’
specifc needs. Similar issues also arise when users write programs
using text-based editors (there exist many built-in functions in
a particular programming language and multiple variables in a
program), but advances in LLM assistants show that such challenges
can be efectively reduced. For example, GitHub Copilot [23] enables
users to generate code by simply describing users’ requirements in
natural language. Even though the generated code is not absolutely
correct, the AI assistance usually fnishes a large portion of the task,
and programmers may only need to make a few edits to achieve a
correct result [12, 38]. To this end, we raise the following question
that motivates our work: How can we build visual programming
assistants to accelerate the design and prototyping of ML pipelines?

This paper introduces InstructPipe, a visual programming AI
assistant that enables ML pipeline generation and design through
natural language instructions. InstructPipe facilitates node connec-
tion and selection, allowing users to focus on more creative tasks
like parameter tuning and interactive analysis within the visual
programming workspace. We focus our AI assistant exploration
on ML-based pipelines, and therefore implemented InstructPipe as
an extension to Visual Blocks [18], a visual programming system
for prototyping ML pipelines. One major technical challenge in
implementing InstructPipe lies in the lack of visual programming
data, making it impractical to fnetune a dedicated code-LLM similar
to how developers build text-editor-based copilots [12, 23, 38]. We
addressed this issue by decomposing the generation process into
three steps (Figure 1). InstructPipe’s frst LLM module scopes the
potentially useful nodes, while the second LLM module generates
pseudocode for a pipeline. InstructPipe then parses the pseudocode
and renders the pipeline in the node-graph editor to facilitate
further user interaction. Our technical evaluation suggests that
InstructPipe reduces the necessary user interactions by 81.1% when
users select and connect nodes, compared to building them from
scratch. This can potentially streamline the development process,
and allows users to focus on more novice-friendly interactions like
parameter-tuning and human-in-the-loop verifcation. Our system
evaluation with 16 participants demonstrated that InstructPipe
signifcantly reduced users’ workload in their creative process.
Qualitative results further reveal that InstructPipe efectively
supports novices’ on-boarding experience of visual programming
systems and allows them to easily prototype concepts for various
purposes. In our experiments, we also observed new challenges
caused by human cognitive characteristics, and proposed future
technical directions towards open-ended AI prototyping assistants.

In summary, we contribute:

(1) InstructPipe, a visual programming AI assistant that enables
users to generate ML pipelines from human instructions by
automating node selection and connection,

2

https://doi.org/10.1145/3706598.3713905

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

(2) System design and technical development of InstructPipe.
The system consists of two LLM modules and a code
interpreter, which generate the specifcation for the visual
programming pipeline, compile the code, and render the
pipeline in an interactive node-graph editor,

(3) Technical and user evaluations that characterize the efec-
tiveness of InstructPipe, and contribute fndings that reveal
new challenges for the HCI community.

2 Related Work

2.1 Visual Programming
A computer program defnes the operation of computer systems.
However, “the program given to a computer for solving a problem
need not be in a written format” [73]. This future-looking statement,
dating back to the 1960s, inspired several generations of researchers
to design and build visual programming systems.

Today, visual programming systems (e.g., LabView [39], Unity
Graph Editor [76], PromptChainer [84], ComfyUI [13] and Visual
Blocks [18]) typically feature a node graph editor, providing
users with a visual workspace to “write” their program using
“building blocks” [28, 68, 89]. Recent work further explored the
application of visual programming in education [9, 35, 40], XR
creativity support [88, 91, 93], and robotics [14, 30, 31]. For
example, Zhang et al. [93] connected the visual programming
tool to the concept of teaching by demonstration [44, 49, 99],
allowing users to rapidly customize AR efects in video creation.
FlowMatic [91] extended traditional visual programming interfaces
into 3D virtual environments, providing users with immersive
authoring experiences.

Advancements in AI have introduced many repositories of
advanced ML models [33, 66], and an increasing number of
researchers are exploring AI chains [41, 86]. This progress has
motivated HCI researchers to design and build a range of visual
programming interfaces to support the AI development process [13,
43, 84]. For example, ChainForge is a web-based platform for
developers to explore various LLM-related confguration and
designs in a wide range of applications [4]. Visual Blocks enables
creation and interaction of advanced ML pipelines that can leverage
state-of-the-art computer vision and computer graphics models in
the browser [18].

This work contributes the technical system, implementation and
evaluation of a novel AI assistant that enables the use of text-based
instructions in visual programming of ML pipelines. Compared to
typical workfows in which people manually build their pipelines,
InstructPipe has the potential to accelerate ML pipeline prototyping
in visual programming.

2.2 Interactive Systems with LLMs
The advances in LLMs bring many research directions for
HCI researchers. Researchers have started designing new LLM
interfaces, to advance beyond the currently dominant chatbot
interface (e.g., OpenAI ChatGPT, Google Gemini). For example,
Graphologue [36] augmented LLM responses with interactive
diagrams that visualize response texts in a structured format.
Sensecape [71] provides users with a workspace to explore long
LLM responses in a hierarchical structure.

Many HCI researchers integrated LLMs in conventional inter-
active systems and demonstrated that such enhanced machine
intelligence can provide new user experiences [20, 46, 56, 60, 78].
This research principle is widely applied in many downstream
HCI applications, including visualization [65, 80], explainable
AI [79, 85], and social science [45, 55]. For example, Chen et al. [11]
utilized LLMs to bridge low-level sensor information with high-level
human requests. Experiments showed that such connection allows
users to “construct their personalized contexts [for an intelligent
system] more quickly, accurately, and naturally”. To interface human
intention with machine operations, researchers typically utilized
LLMs by following the ReAct (reasoning and acting) paradigm [87].
For example, Park et al. [55] simulated human behaviors in an
artifcial social system by leveraging LLMs as intelligent agents
that perceive the environment, plan their behaviors, and act in
the environment. Automated Visualization (AutoViz) researchers
employ LLMs for data analysis and reasoning for presenting the
visualization [48, 50, 63]. For example, LIDA features four modules
in the visualization pipeline to 1) summarize a structured dataset,
2) explore the user’s goal, 3) generate code for visualization, and 4)
render visualization [16]. ChartGPT further constructs a dedicated
dataset for chart visualization, and fnetunes an LLM for fully
automating the data visualization pipeline [74].

InstructPipe extends the application of ReAct-like LLM frame-
works [16, 74] to visual programming and demonstrates its
efectiveness to support rapid prototyping with lower user
workload. Additionally, introducing visual programming to the
ReAct framework showcases an interface solution for human-AI
collaboration. That being said, our work values partially correct AI
generation, though the previous literature considers it as a complete
generation failure [16, 24]. We leverage visual programming as a
platform to integrate partially complete AI generations with human
interactions, enabling even novices to intuitively collaborate with
AI in their creative processes.

3 InstructPipe
InstructPipe is an AI assistant that enables users to generate a visual
programming pipeline by simply providing text-based instructions.
We implemented InstructPipe on Visual Blocks [18, 98], a visual
programming system for prototyping ML pipelines.

3.1 User Workfow
To generate a pipeline, users frst click the “InstructPipe” button
in the top-right corner of the interface (Figure 2b). The system
then activates a simple dialog (Figure 2a) in which users provide
a description and a tag for their desired pipeline. The tag
can be “language”, “visual”, or “multimodal”, and helps guide
the pipeline generation. After users click the “Submit” button,
InstructPipe generates a visual pipeline in the node-graph editor.
More specifcally, InstructPipe generates a directed acyclic graph
(DAG) of a visual programming pipeline. This implies that it uses
default node parameters (e.g., the “temperature” or “max_tokens”
value of an LLM node). Therefore, after the generation, the user
needs to 1) fnish the graphic structure if necessary, and 2) perform
parameter tuning as well as human-in-the-loop evaluation of the
pipeline quality interactively in the visual programming platform.

3

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

(a) InstructPipe’s instruction dialog.

(b) InstructPipe’s visual programming interface.
Figure 2: The user interface of InstructPipe. The user can frst click on the “InstructPipe” button on the top-right corner of the
interface in (b). A dialog will appear, and the user can input the instruction and select a category tag. InstructPipe then renders
a pipeline on (b), in which the user can interactively explore and revise.

PaLM /

Google Web Search

/ Text Processor

PaLM

Imagen / Google
Image Search

PaLM /  
Google Sheet

URL2HTML /

String Picker

Mask Visualizer /
Tensor2DepthMap

PaLI / OCR

Face Landmark /
Pose Landmark /

Portrait Depth

Body Segmentation
/ Image Processor /

Image Mixer /
Virtual Sticker

I N P U T

O
U

T
P

U
T

F e at u r e s

F e at u r e s

T e x t s

V i s i o n

T e x t s V i s i o n

Figure 3: The distribution of 20 primitive processor nodes
supported by InstructPipe. Note that “PaLM” represents two
nodes in InstructPipe, i.e., a text generation model and a chat
model of PaLM [3].

As we will show in our evaluation, this new human-AI collaboration
approach reduces users’ workload on the technical portion of the
visual programming tasks (selecting and connecting nodes) and
thus provides a more novice-friendly experience for technical visual
programming platforms.

3.2 Primitive Nodes
InstructPipe supports 27 primitive nodes in Visual Blocks. We
achieved this node library of InstructPipe by fltering out nodes
without explicit defnition of their functions1. For example, ‘TFLite
model runner’ is an implicitly defned node: the user needs to input
a tensorfow hub link to defne its functionality. As we mentioned
previously, InstructPipe focuses on generating a DAG and leaves
the parameter-tuning task to users. Adding such implicit nodes
without a clear defnition of the functionality can easily confuse
our AI assistant in the generation process, and thus, we decide to
exclude these nodes in the node library of InstructPipe.

The 27 nodes in our library include three input nodes, four output
nodes and 20 processor nodes. The following shows an example
node in each category, and we leave the full node library description
in Appendix A:

• “live camera” (an input node): Capture video stream
through your device camera

• “markdown viewer” (an output node): Render Markdown
strings into stylized HTML.

1Note that Visual Blocks is a system that is actively being updated, and there are more
nodes now.

4

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

• “imagen” (a processor node): Generate an image based on
a text prompt.

We distributed 20 processor nodes based on the data type of
its I/O edges and visualized it in Figure 3. For example. “Google
Web Search” takes “Texts” information as input and output new
“Texts”, and “OCR” takes an image (vision-based information)
as input and output “Texts”. “Features” in Figure 3 indicates a
wide range of intermediate data formats used in ML pipelines,
including segmentation masks, pose landmarks, URLs and etc. As
shown in the matrix, InstructPipe contains a wide range of nodes
that support the creation of complex ML pipelines. Compared to
related work that automates ad hoc ML inferences in specifc use
scenarios [24, 72], InstructPipe makes one more step towards the
open-ended assistants with a more diverse set of primitive nodes.
Further extending our node library can efectively empower the
capability of our AI assistant, which we leave as critical future
work. In the current implementation of InstructPipe, we focus on
demonstrating its capability based on our focused node library and
explore what new experiences this AI assistant can bring to our
users.

4 Pipeline Generation from Instructions
InstructPipe leverages LLMs to generate visual programming
pipelines from text instructions. There are two prevailing ap-
proaches for LLM-customization, fne-tuning [46, 62], and few-shot
prompting [24, 55]. Fine-tuning would require a substantial volume
of annotated data, with pairs of pipelines and prompts, and it is hard
to achieve for a specifc visual programming platform. Additionally,
a growing list of nodes would consistently require 1) new data
annotation and 2) retraining the model, making this approach less
sustainable. In comparison, few-shot prompting is a more practical
approach for prototyping an interaction concept to understand
the new experience it would bring to the community [24, 81, 87].
One major challenge of applying LLMs in visual programming
AI assistants lies in designing efcient prompts that ft within a
reasonable number of tokens. Even though we focus our exploration
on 27 nodes, the node confguration fle alone includes 8200 tokens.
Further formulating pipeline examples as in-context few-shot
examples would result in a combinatorial explosion, causing an
overwhelming number of tokens in the prompt.

To this end, we implement InstructPipe with a two-stage
LLM refnement prompting strategy, followed by a pseudocode
interpretation step to render a pipeline. Figure 1 illustrates
the high-level workfow of the InstructPipe implementation.
InstructPipe leverages two LLM modules (highlighted in red); a
Node Selector (section 4.2), and a Code Writer (section 4.3). Given a
user instruction and a pipeline tag, we frst devise the Node Selector
to identify a list of potential nodes that would be used according to
the instruction. In the Node Selector, we prompt the LLM with a very
brief description of each node, aiming to flter out unrelated nodes
for a target pipeline. The selected nodes and the original user input
(the prompt and the tag) are then fed into the Code Writer, which
generates pseudocode for the desired pipeline. In Code Writer, we
provide the LLM with detailed descriptions and examples of each
selected node to ensure the LLM has extensive context for each
candidate node. Finally, we employ a Code Interpreter to parse the

(a) Pipeline.

(b) Pseudocode.
Figure 4: A pair example of pipeline and pseudocode. In the
frst line of code under “processor”, pali_1_out, pali_1, pali
and image=input_image_1, prompt=input_text_1 represents
output variable id, node id, node type, and node arguments,
respectively.

pseudocode and render a visual programming pipeline for the user
to interact with.

4.1 Pipeline Representation
The Visual Blocks system takes JSON-format data as input and
renders a directed acyclic graph (DAG) in the visual programming
workspace. Therefore, the ultimate goal of InstructPipe is to
generate the JSON fle; however, directly generating the long
JSON fle is computationally expensive. For example, the JSON
fle for rendering the pipeline in Figure 4a contains approximately
2.8k tokens. To address this issue, we utilize the pseudocode
representation of a DAG, and defne this token-efcient data format
as the output data format of our LLM module. Figure 4b shows
the corresponding pseudocode representation of the pipeline in
Figure 4a, and the it only contains 123 tokens. The pseudocode
representation simply stores the DAG information of a visual
programming pipeline without other information such as node
parameters (e.g., the “max_tokens” confguration of an LLM module)
and the layouts of the nodes. This indicates that InstructPipe leaves
the task of node parameter tuning to the user, which we believe
is a more novice-friendly task, and focuses on providing technical
assistance on selecting and connecting nodes.

In the following content, we provide detailed explanation on
the pseudocode design and implementation. As we mentioned
above, Figure 4 provides an example of a pipeline (Figure 4a) and
its corresponding pseudocode (Figure 4b). The syntax design is
inspired by TypeScript, and the overall structure is inspired by how
academic papers present pseudocode [94] in an algorithm block. In

5

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Figure 5: The prompt structure for the Node Selection module.
Each node description is formated as "{node types}: {short
descriptions of the nodes}; {recommended node(s)}". The node
recommendation is optional.

Figure 4b, we highlight the frst line under the processor module
(i.e., the operation of the PaLI node) in diferent colors, representing
four diferent components in the programming language. “pali_1”
is the unique node ID. The green symbol after the colon, i.e., “pali”,
specifes the node type. In this example, node ID “����_1” is a
“pali” node. The arguments in brackets, i.e., “image=input_image_1,
prompt=input_text_1”, specifes the input variables (or input edges
in the graph) of this node. “pali_1_out” represents the output
variable name. For input nodes, the output variable name is the
same as the node id, so we do not annotate the output variable
with a separate name (e.g., “input_image_1: input_image()” instead
of “input_image_1 = input_image_1: input_image()”). Note that
InstructPipe generates texts (i.e., the node parameter) in the “input
text” node. Therefore, the argument in “text=“caption this image in
detail”” does not indicate that the “input_text” node accepts input
edges, but accepts the node parameter input as a special case.

4.2 Node Selector
Node Selector flters out unrelated nodes by providing the LLM
with a short description of each node. Figure 5 shows the prompt
we use in Node Selector. Followed by a general task description
and guidelines, we list all node types with a short description
that explains the function of each. Several nodes come with
recommendation(s) when the users interact with Visual Blocks,
and we also include such node recommendations in the prompt.
The main intuition of this prompt design is based on how existing

You are a programmer responsible for helping the user design an AI
pipeline.
Upon receiving a concise description from the user about the
desired functionality of the pipeline, you should generate the whole
pipeline using pseudocode.

Guidelines:
1. Respond solely in pseudocode, without additional commentary.
2. Utilize ONLY the nodes listed below; introducing new nodes is not
permitted.
3. Ensure there's a minimum of one line in each pseudocode
category: 'input', 'output', and 'processor'.

Below are the nodes you can incorporate into the pipeline:
… // detailed node configurations for each selected node

The following is a full list of nodes you may also use but those not
included above are not recommended:
… // a full list of node types supported by LLM2Pipeline

Examples:
Q:
{'description': 'generate a photo and validate whether it is real or
generated.', 'tag': 'multimodal'}
A:
… // pipeline pseudocode

… // more in-context examples

Figure 6: The prompt structure for the Code Writer module.
Detailed node confgurations, see the appendix for examples,
are listed in the highlighted region.

open-source libraries (e.g., Numpy [25]) present a high-level
overview of all functions2. The documentation typically presents
a list of supported functions (in each category), followed by a
short description so that developers can quickly fnd their desired
functions. At the end of the prompt, we provide a list of Q&As as
few-shot examples to support the LLM to learn and adapt to the
context of the task.

4.3 Code Writer
With a pool of selected nodes, the Code Writer module can write
pipeline rendering pseudocode. Figure 6 shows the structure of
the prompt utilized in this LLM module. Similar to section 4.2, the
prompt starts with a general introduction and several guidelines.
The major diference in the prompt design in this stage lies in
the granularity of each node introduction. We provide a detailed
confguration for each selected node with additional information,
including 1) input data types, 2) output data types, and 3) an
example, represented in pseudocode, for how this node connects
to other nodes. We include a detailed explanation of the full
node confguration in Section B.1.2. Similar to the previous LLM
module (section 4.2), the prompt design here is also inspired by
the documentation of existing software libraries. Specifcally, we
gain inspiration from low-level function-specifc documentation3,
which typically includes 1) a detailed description, 2) data types in

2See an example in the following link: https://numpy.org/doc/1.25/reference/routines.
array-manipulation.html
3See an example in numpy.shape: https://numpy.org/doc/1.25/reference/generated/
numpy.shape.html#numpy-shape

6

https://numpy.org/doc/1.25/reference/routines.array-manipulation.html
https://numpy.org/doc/1.25/reference/routines.array-manipulation.html
https://numpy.org/doc/1.25/reference/generated/numpy.shape.html#numpy-shape
https://numpy.org/doc/1.25/reference/generated/numpy.shape.html#numpy-shape

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

the input/output, followed by 3) one or more examples of a few
lines of code for how developers can use the function.

The prompt also includes a Q&A list as few-shot examples.
However, providing few-shot examples in this stage is non-trivial.
The reason lies in the dynamics of the node selection pool. A
combination of all the nodes causes many possible options, and
it is impossible to design a dedicated list of few-shot examples in
each possible case. Therefore, we only created an example list for
each pipeline tag (i.e., “language”, “visual”, and “multimodal”) and
intended to utilize these few-shot pipelines to teach LLMs example
use cases in each category. This implies that in-context pipelines
may include nodes that were not selected for the prompt. This can
potentially lead to LLM hallucinations [32], i.e., utilizing the nodes
that do not exist in our node library. We mitigated this issue by
adding specifc prompts that explicitly show a list of supported
nodes (i.e., the contents start with “the following is a full list of
...” in Figure 6). However, LLM hallucination is a community-wide
challenge, and we also fnd that our approach cannot eliminate
this issue in visual programming. Therefore, InstructPipe conducts
a sanity check for the Code Writer outputs and directly disposes
of the line of pseudocode with such hallucinated nodes. This can
ensure that the generated code is in a valid data format for rendering
the pipeline in Visual Blocks.

4.4 Code Interpreter
After our LLM modules generate the pseudocode, InstructPipe
employs a code interpreter to parse the generated pseudocode and
compile a JSON-formatted pipeline with an automatic layout. Since
we incorporated standard approaches to achieving such conversion
from the pseudocode to the JSON fle, which we do not intend
to claim as our main contributions, we briefy summarize our
implementation into the following three steps for simplicity and
elaborate low-level implementation details at Appendix B.2:

(1) Lexical Analysis: InstructPipe frst tokenizes each line of
the pseudocode into output variable id, node id, node type,
and node arguments (section 4.1).

(2) Graph Generation with Default Node Parameters: We
generated a DAG based on the tokenized results and applied
predefned default node parameters in each generated node.
For example, by default, the temperature and the max output
tokens for the PaLM node are set to 0.5 and 256, respectively.
If users are not satisfed with the default values, they can
interactively adjust the parameters in the node-graph editor.

(3) Layout Optimation: When pseudocode is converted into a
JSON fle, default node parameters will cause sub-optimal
visual efects (Figure 11a). InstructPipe conducts a layout
optimization process using the breadth-frst search (BFS) al-
gorithm, which re-arranges the layout for better presentation
of the pipeline (Figure 11b).

5 Technical Evaluation
InstructPipe contributes a framework for generating specifcations
for visual programming pipelines based on text prompts from users.
To characterize the system’s performance, we designed a technical
evaluation to assess the accuracy of the generated graphs for a
variety of prompts.

5.1 Data Collection
To compute the accuracy of our generated pipelines, we need to
collect a corpus with pairs of instructions and their corresponding
ground-truth pipelines. Therefore, we organized a two-day hybrid
workshop with 23 participants, aiming to collect real pipelines
that Visual Blocks users would build for their creative usage.
The 23 participants (F: 6; M: 17) are composed of fve software
engineers, four research scientists, four students, three designers,
two project managers, and two engineering managers. Six attendees
claimed that they had prior experience in using Visual Blocks. As
this was a data collection study rather than a user study, where
each participant here served as a data creator and annotator, we
did not restrict participation to individuals who self-identifed as
novices. The workshop began with a 15-minute Visual Blocks
tutorial walking the participants through the nodes and the
pipeline-building process. After the tutorial, attendees created
pipelines independently. Once they fnished creating the pipelines,
participants were required to caption their pipelines and upload
them. We utilized this corpus of data pairs (caption/pipeline) as the
data set for the technical evaluation.

The workshop was an open-ended creation process in which
participants were free to use any node available in Visual Blocks
with more than the 27 nodes covered by InstructPipe. The
InstructPipe feature was not available in the workshop. After the
workshop, we post-processed our collected data and achieved
48 pipelines (23 language pipelines, seven visual pipelines and
18 multi-modal pipelines) for our technical evaluations. The
post-processing procedure details are presented in Appendix C.1.

5.2 Metric: The Number of User Interactions
To quantify the efcacy of InstructPipe based on our goal of
accelerating and streamlining pipeline creation, we defned the
metric Number of User Interactions as follows:

The Number of User Interactions is defned as the minimal
number of user interactions needed to complete the pipeline
from a generated pipeline.
This defnition is mainly inspired by Graph Edit Distance

(GED) in graph theory [22]. Note that there are countless ways
to modify a generated pipeline toward a complete pipeline in
practice. Nevertheless, the minimal number of user interactions
is deterministic, and this is an objective metric that can fairly
estimate the amount of efort users need to spend to achieve their
goal. A pipeline is considered complete when it satisfes the given
instruction. We calculate the number of interactions across two
types of events: 1) adding/deleting a node, and 2) adding/deleting
an edge between nodes. In the technical evaluation, we report the
average ratio of user interactions required to complete a pipeline
“from our generated pipeline” compared to “from scratch” as our
target metric. For example, if it takes 3 interactions to complete
a pipeline from our generated results and takes 10 interactions
to complete from scratch, then the ratio of interactions is 30%.
Appendix C.2 contains further discussion of this metric.

5.3 Experiment Setups and Results
We ran our generation algorithm on the pipeline captions six times
(three times for each caption × two captions for each pipeline), and

7

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Table 1: The ratio of human interactions in the technical eval-
uation. Results are reported as mean ± standard deviation.

Overall Language Visual Multimodal

18.9 ± 20.3% 17.4 ± 20.6% 17.6 ± 23.7% 20.8 ± 16.0%

computed an averaged performance among the six trials for each
pipeline.

Table 1 summarizes the results of the technical evaluation.
Compared to building a pipeline from scratch, InstructPipe allows
the user to complete a pipeline with 18.9% of the user interactions,
demonstrating the potential of InstructPipe to require more than
5X fewer interactions. Seven generated pipelines directly satisfed
with instructions without user interactions in all six trials, and 38
generated pipelines completed at least once in any of the six trials.

6 User Evaluation
While the technical evaluation demonstrates the accuracy of
InstructPipe among various real pipelines created by participants,
it is still unclear what is the actual user experience when real users
go through the entire system workfow. Therefore, we conducted
an in-person user study of InstructPipe with another group of
participants, aiming to provide more insights into our system
performance as well as explore new user experiences brought by
InstructPipe. The study recruitment was in accordance with the
ethics board of Google. We obtained participant consent before the
study began.

6.1 Study Design
In the user evaluation, we aimed to investigate how the interface
condition (with InstructPipe and without InstructPipe; the inde-
pendent variable) afects the user experience and behaviors (the
dependent variable). We will refer to these two interface conditions
as “InstructPipe” and “Visual Blocks” in the following content.
Figure 7 visualizes the complete study fow. In each condition,
participants completed the two pipelines with counterbalance
(referred to as Task 1 and Task 2 in Figure 7).

We carefully designed the experiment to create a fair study that
could be completed with reasonable efort. In the following content,
we elaborate on how we made two important decisions related to
the study’s rigor:

6.1.1 Two controlled pipelines with full counterbalancing.
Our user evaluation focuses on two controlled pipelines with full
counterbalancing. While we acknowledge that more pipelines
(e.g., four, six, or more) could enhance generalizability, such
designs would also inevitably increase the size of the required
user groups, even without fully counterbalancing. For example,
fully counterbalancing four controlled pipelines requires 12×
more participants. Partially counterbalancing with four pipelines
using the Latin Square design still requires us to double the
number of participants. Additionally, novice participants are likely
to progressively gain experiences within the study, and such
learning efects will weaken the design of partial counterbalancing.
We believe that two pipelines with full counterbalancing are a
reasonable experiment setup in this work, and future work could
consider extending and scaling up these experiments.

Figure 7: A fow diagram of the user study. After a training
session, participants completed the two tasks in each con-
dition in the sequence determined by the counterbalancing
protocol.

6.1.2 Pipeline selection. Given the fxed number of pipelines we
can evaluate with users and the potential bias introduced by few-
shot prompts [96], it is important how we select the two pipelines
for user study. There are two critical factors that we considered:
representativeness and diversity. Representativeness implies that
the selected pipelines should represent the average performance of
InstructPipe. Diversity suggests that the selected pipelines should
provide various experiences to simulate the actual use scenarios
in which the performance of InstructPipe may vary. Following
this guideline, we selected four candidates, and the fnal decision
was made after a pilot study with one participant to test the level
of pipeline difculty. The two resulting pipelines are composed
of eight nodes with seven edges, and six nodes with six edges,
respectively. Using the instructions from two authors, the averaged
ratio of human interactions in these two pipelines are 27.8% and
5.2%, respectively. See Section D.2 for more detail on the pipelines.

6.2 Procedure
Each study session takes 55 - 65 minutes in total. The study started
with 10-15 minutes of hands-on training for both conditions. The
training included 1) all the Visual Blocks interactions needed to
complete the subsequent steps of the experiment, and 2) all the
nodes that participants will need to use for pipeline creation in
the main session. Participants were also encouraged to experiment
with building a pipeline independently, and to ask questions.

After the training, participants progressed to a formal study
session where they were asked to build and complete pipelines
under the given conditions. We verbally described the pipelines to
participants as below, and participants could not see our scripts:

• Text-based pipeline: get the latest news about New York
using Google Search and compile a high-level summary of
one of the results.

• Real-time multimodal pipeline: create a virtual sun-
glasses try-on experience using your web camera.

8

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

A pipeline is considered complete when the aforementioned
functions run in the user’s visual programming workspace. For
example, we consider the “real-time multi-model pipeline” as
complete when the pipeline registers the sunglasses on the user’s
face, with real-time tracking and following of the head movement.

During the task, participants were allowed to consult with us
for technical help. If participants were unable to make progress,
we provided hints. We provided many more hints in the baseline
condition, and we made this decision to ensure every novice-level
participant can fnish their tasks within a reasonable amount of
time. Appendix D.3 contains more details and discussions of the
assistance we provided in the study. As an optional extension to
the study, eight participants were ofered an open-ended pipeline
creation, where participants prototyped their own ideas using
InstructPipe. This optional section was ofered based on the
progress of the participant in the previous sections, and time
constraints so that the study duration was controlled within the
time we guaranteed in our recruitment process.

After conducting all pipeline-condition combinations, par-
ticipants answered open-ended questions in a semi-structured
interview. The interview script is available in the appendix D.1.
Participants provided their general impression of each condition,
listed pros and cons, identifed potential future use cases, and
critiqued the user interface for future improvements. We transcribed
the interviews and conducted the open coding analysis on the
qualitative data [69, 70]. More specifcally, we categorized the
quotes based on our observations and then refned the code for
presentation.

6.3 Participants
We recruited 16 participants from our internal participant pool,
which is specifcally designed for UX research within our institution.
Importantly, none of the participants was involved in our project,
and the authors in charge of the study did not personally know any
of the participants. We screened participants on their self-reported
programming experience and machine learning skills. All of the
16 selected participants rated their “Programming Experience” and
“’Machine Learning Skill’ as “Intermediate” or below (See Table 3
for a full breakdown). We intentionally recruited novice users, as
we envision them as intended users of InstructPipe.

6.4 Metrics
In addition to the qualitative data from the interview, we measured
the following quantitative data.

6.4.1 Task Completion Time. Back-end logs were used to collect
timestamps for starting and ending events. Then, the completion
time for each condition was calculated per task for each participant.

6.4.2 The Number of User Interactions. We used the number of
user interactions (introduced in section 5.2) to measure the user’s
objective workload. Unlike the results in section 5.3, we report an
absolute value here because all the pipelines are controlled in the
system evaluation.

6.4.3 Perceived Workload. The raw task load index (Raw-TLX)
questionnaire was used to measure participant’s perceived work-
load [26]. This questionnaire was a subset of the NASA-TLX (part

Table 2: Task completion time and the number of human
interactions in the user study (N=16). We use ∗ ∗ ∗ to denote
� < .001.

System
Time (secs)

Median IQR p
Interactions

Median IQR p

InstructPipe 203.5 156.25 *** 5.0 4.25 *** Visual Blocks 304.5 124.25 16.0 6.0

I). Participants flled out the questionnaire after each condition
(InstructPipe or Visual Blocks).

6.5 Results
6.5.1 InstructPipe Reduces Users’ Workload. Table 2 shows
the results of two objective metrics measured in the study. The
Wilcoxon signed ranks test found signifcant diferences on both
scales (� < .001).

Figure 8 further visualizes the results of users’ perceived
workload in six sub-scales. The Wilcoxon signed ranks test
revealed signifcant diferences on fve sub-scales, all except “Mental
Demand” (see section 7.2 for more explanations and discussion).
Furthermore, the test indicates that all participants unanimously
considered that InstructPipe provides lower or equal workload
on the subscales of “Physical Demand”, “Temporal Demand”,
“Performance” and “Efort” (� = 0). These quantitative results, with
both objective and subjective metrics, demonstrate the potential
for InstructPipe to dramatically reduce users’ workload during the
pipeline creation process.

Users’ qualitative feedback is also aligned with our quantitative
results. Participants complimented that InstructPipe is “helpful”
[P16] and “obviously easier (to use) than [Visual Blocks]” [P1]. P11
and P6 further elaborated how InstructPipe enhances the user
experience when the user builds a visual programming pipeline:
“I feel like I can talk in natural language, and it (InstructPipe)
can write the code for me.” [P11]

6.5.2 On-boarding Support of Visual Programming. P1, P5,
and P9 explicitly mentioned that there is a “learning curve” in
visual programming systems, which validates our statements and
motivation in section 1.
“There is a learning curve to it (using the visual programming
system) for sure, because you have to, like, read each node
carefully.” [P1]
P1’s comment matches our observation of participants’ behaviors

during the study. In the Visual Blocks condition, we observed
that people were more easily stuck in their creative purposes,
which required our support. Typical support included 1) guiding
participants if they went too far away from the correct pipeline, and
2) reminding them of an important node for the pipeline, although
we introduced all the necessary nodes in our training session.

To this end, participants commented that InstructPipe is a good
onboarding tool in visual programming systems, especially for
non-experts, to get familiarized with the system by having a ready
solution.
“[InstructPipe] lets you know these nodes exist [when the pipeline
appears after the instruction]. It’s like a super speedy tutorial.”
[P7]

9

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Figure 8: Raw-TLX results. The statistic signifcance is annotated with ∗ , ∗∗ , or ∗∗∗ (representing �<.05, �<.01, and �<.001,
respectively).

“If you don’t have experience in visual programming, you will
appreciate [InstructPipe] much more ... With [InstructPipe], the
structure is there, and I feel less worried about making mistakes.
It’s, like, giving you examples. It’s easier than starting from
scratch.” [P5]
Anecdotally, three participants asked for InstructPipe during the

Visual Blocks condition.

6.5.3 Integration into the Existing Workflow. InstructPipe is
a feature available in Visual Blocks. In the interviews, participants
particularly expressed their strong appreciation of this design as
an AI assistant that enhances, instead of completely replacing, the
existing user workfow:
“[The pipeline generated by [InstructPipe] could be pretty close
to what I want ... Or maybe sometimes not, but that’s okay. I
got most of the blocks there, and then it’s up to me to fgure out
how to connect them.” [P6]
While most participants, like P6, appreciated the integration

of the AI assistant into the standard visual programming work-
fow, P15 expressed a concern about this approach. In visual
programming, users typically rely on visual thinking to construct
pipelines, but the new prompt-based method introduces a shift
toward text-based reasoning. This blend of cognitive processes
could potentially increase users’ mental workload:
“ [the participant is talking about s/he wants to fx an
unsuccessful generation by changing the prompt instead of
performing visual programming here] ... because I just spent
so much time fguring out what the prompt should be. That’s
kind of like already where my brain was and I knew that
something was wrong there (the prompt), but I would have
to switch over to the other mode (visual programming) of
fguring out what was wrong in the pipeline ... [this is very
overwhelming]” [P15]

6.5.4 Use Scenarios: Accessible ML Prototyping and Edu-
cation. In the open-ended session, we observed that participants
could efciently utilize InstructPipe to prototype a pipeline for
various daily life or business purposes. For example, P14 tried
InstructPipe with “summarize real estate price increase in San Diego
California over 2023”. Compared to using LLM chatbots, InstructPipe
helps the user quickly build a more explainable pipeline in which the

user can track (or modify) the information resources. P4 prototyped
an interactive VQA app by “Describe the product in the camera”.
P13 further shared his thoughts on how this rapid and accessible
prototyping experience can support future business:

“It (InstructPipe) is going to facilitate prototype building for PMs
(Product Managers) ... I have lots of ideas, but my challenge
is how to translate an idea into the technical world and see a
prototype. I think that this app expedites me in that process a
lot.” [P13]

Another emerging theme was regarding educating kids on
programming:

“With [InstructPipe], I don’t need to teach them (kids) to code
for them to build something ... Some kids like to code, some kids
like to create stuf but don’t want to be bored with learning the
syntax of coding ... Using [InstructPipe], I can see kids can build,
like, customized chat-bots or interactive Wikipedia.” [P13]

6.5.5 Limitations and Future Directions. Across the study
sessions, we consistently observed a specifc user behavior pattern:
participants typically paused their pace when a generated pipeline
appeared in the workspace. At these times, some participants used
soliloquy, as in saying “Let me see”, while others kept a focused stare
on the workspace. These human behaviors suggest that InstructPipe
led participants to engage in deeper, contemplative thought.

The observation suggests that participants needed time to
perceive the generated pipelines as they appeared in the workspace.
Such sense-making processes bring new challenges to the creative
process:

“[Using InstructPipe] is a little mentally demanding ... I have to
debug ... If it doesn’t help (generating an almost 100% correct
pipeline), I have to go through all the nodes ... I don’t like
debugging.” [P13]

Additionally, we observed that several participants spent more
time crafting their prompts than others. P15 spent the most time
writing the prompt. The following comments provide insights into
how the prompting process caused extra mental workload:

“I’m a relatively visual thinker ... Getting the prompt right
requires me to think in a way that is a lot more like precise
and like getting it fgured out without working it out live ...

10

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

[When writing prompts,] you’re just putting them (every detail
in a whole pipeline) all out [in one short prompt]” [P15]
In addition to the lack of the original visual thinking experience

in visual programming, P13 also warned that such simplifcation of
the creative process into prompting experience may sacrifce users’
hands-on experiences:
“I’m very hands-on with techs. I would like to understand what’s
going on [rather than prompting LLMs to generate everything
for me]. I want to like think for myself and then compile all the
information myself.” [P13]

7 Discussion

7.1 Human-AI Collaboration in Prototyping
Open-ended ML Pipelines

Our technical evaluation (section 5.3) shows that InstructPipe
reduces the number of user interactions to 18.9 % (±20.3%) There
are two key implications from the results:

• InstructPipe automates most pipeline components with a
single prompt.

• InstructPipe is not able to automate all the pipeline creation
processes.

Such takeaways difer from early-stage fndings that show LLMs can
achieve full automation of ML inference [24, 72]. The main reason
is that existing work built their ad hoc solutions for target use
scenarios, respectively. In contrast, InstructPipe covers a larger
range of ML models (section 3.2) and aims for an open-ended
use case. Our results show that LLMs (we used GPT-3.5-turbo in
the study) still fail to write robust code with prompt engineering
techniques. This aligns with the latest research fndings that show
that even the latest LLMs still fail to formulate a whole working
pipeline [62, 82].

While LLMs cannot generate a fully executable pipeline, our
work shows that AI can successfully render a certain portion
of a pipeline for users. Both technical and user evaluations
highlight the important values here. We believe such values provide
useful takeaways for HCI researchers to explore more human-AI
collaboration approaches and designs in visual programming.

7.2 Three Attributes to Mental Workload
Results in section 6.5.1 show that InstructPipe failed to signifcantly
reduce novice users’ mental demand. We summarized its major
causes into three aspects.

7.2.1 Instruction. P15’s comment in section 6.5.5 summarizes the
frst aspect that causes mental burden. Although the “instruction-to-
pipeline” process is fast and seems efortless, the process of framing
a prompt is one factor that may overwhelm users, especially those
who are more accustomed to visual thinking. InstructPipe requires
its users to 1) be clear about the problem they want to solve, and 2)
be able to clearly articulate the desired pipeline. Such requirements
cause a mental burden to the user [6]. We believe that our results
can reinforce the existing knowledge on how non-experts may not
prompt LLMs well [51, 90] in the visual programming domain.

7.2.2 Perception. The integration of LLM support into the
visual programming interface enables a “multimodal programming”

experience [17], in which, users can program through both
verbal and visual approaches. However, this fexibility increases
perceptual burden as users switch between visual and text-based
thinking [53]. Interestingly, our results seemingly contradict
psychological fndings based on the Dual Coding Theory (DCT) that
show a combination of verbal and visual information actually helps
humans’ memory process4 [52, 54]. Therefore, we believe that the
mental workload stems not from dislike of multimodal workspaces,
but from the lack of a transparent interface that aligns users’ mental
models with AI reasoning both verbally and visually. That being
said, a next-generation copilot should visualize a pipeline (i.e., visual
info) while the user is prompting the system (i.e., verbal info),
constituting and interfacing multimodal processing in humans’
brains.

7.2.3 Debugging. When a rendered pipeline does not match
users’ expectations, users need to debug (see P13’s comment
section 6.5.5). Specifcally, users need to “invest extra efort to review
and understand the generated content” [95] and then solve the issues
caused by the AI assistant. In essence, debugging is a professional
programming skill, which understandably can be mentally over-
whelming for beginner-level users. While InstructPipe visualizes
generated code in the visual programming platform, our results
suggest that future systems should provide more guidance for
beginners to better proceed with their programming tasks.

7.3 Instructing LLMs Poses Challenges for Both
Novices and, Potentially, Experts

As we discussed above, non-experts found it challenging to instruct
LLM. More interestingly, we found that even we, the inventors
of InstructPipe, failed to write optimal instructions. For instance,
the two captions of Figure 13c are “Describe the image and turn
it into a cat image” and “Edit an image by updating the image
caption”. Neither caption explicitly describes the detailed pipeline
fow clearly, and therefore, all the six evaluation trials (section 5)
were incomplete (see Figure 9a for one example). The average ratio
of user interactions is 45.8%, more than twice the average value
for our multimodal pipelines (20.8%). To further understand the
cause of the failure, another author improved the instruction into
“Caption a tiger image using VQA, modify the character in the caption
into a cat using LLM, and fnally generate a cat image based on the
updated caption”. The resulting pipeline is signifcantly improved
but still not perfect (Figure 9b). The user only needs to turn “Imagen”
into another mode so that it also accepts the input “image” node.
Revisiting the improved instruction, we instructed InstructPipe
with “generate a cat image based on THE updated caption”, which
actually missed the input image.

The important takeaway is while natural languages are proven
to be one promising communication media that connects humans
and AI systems [11, 78], instructions may not be the best format to
facilitate such connection. We believe the reason is that instructions
are still not intuitive to humans: AI typically requires fawless and
unambiguous instructions, while humans tend to express their
intentions using ambiguous natural languages in conversations.
We encourage future work to investigate alternative interaction

4For example, people feel it easier to remember a new word if they learn the word
using a vocabulary card with a fgure that explains the texts.

11

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

(a) (b)
Figure 9: A comparison of InstructPipe generated by two instructions: (a) “Edit an image by updating the image caption” ; (b)
“Caption a tiger image using VQA, modify the character in the caption into a cat using LLM, and fnally generate a cat image
based on the updated caption”. See Figure 13c for the complete pipeline.

mediums beyond instructions to further enhance user experience
in human-AI collaboration.

8 Limitations and Future Work

8.1 Assisting Humans to Prompt AI Copilot in
Visual Programming

InstructPipe introduces a novel user interaction technique for visual
programming, along with its set of challenges – prompting AI is not
easy [90]. While the latest research has explored prompt writing
assistants [7, 42, 47], creating such assistants in visual programming
poses unique challenges, as discussed in section 7.2, and requires
further dedicated investigation. Despite these challenges, the visual
programming workspace ofers a unique opportunity – it provides
an interactive and visual medium for delivering AI-generated
information. For example, a prompt writing assistant could provide
“a pipeline preview” in real time via a lightweight LLM. Visualizing
estimated outcomes, such as unexpected pipeline results (as
illustrated in Figure 9a), highlights the potential of these tools
to guide users in refning their instructions efectively.

8.2 Node Parameter Tuning
InstructPipe focuses on generating the graph structure in the
pipeline (section 4.1), and InstructPipe is not able to generate node
parameters. The latest research in AI agents shows great potential
for distributing a systematic task among multiple LLMs and letting
them solve the problem collaboratively [37]. We encourage future
work to extend such distributed AI agent approaches to generate
suitable node parameters to further reduce users’ workload in
tuning them.

8.3 A Larger and Dynamic Node Library
InstructPipe is an AI assistant prototype on a small-scale library
with 27 nodes. Similar to other tool-calling LLM systems [15, 64],
InstructPipe cannot generate any out-of-scope node, and thus, there
is a limited scope of pipelines that InstructPipe can generate. Future
work should investigate a scale-up problem by creating an assistant
that supports large-scale nodes [61]. What new technical challenge
will emerge? Will such a large-scale library provide practical human
value? If yes, what are the concrete new user experience it opens
up in visual programming?

Additionally, future work should explore a dynamic solution
of the node library, in which an AI assistant can defne necessary

nodes in visual programming on the fy. HuggingGPT [66] is a
pioneering project that shares a similar vision as this goal, but
existing investigations show that the accuracy of such open-ended
generation is still unsatisfactory [58, 62]. How can we design an
interface to bridge such imperfect AI and human users in visual
programming copilot? What will be the interaction paradigm in an
interactive system with a dynamic node library?

8.4 Refning System Component Design
InstructPipe provides a system contribution, and we verifed
the usefulness of InstructPipe via two evaluations that assess
InstructPipe as a whole system. One important future direction
would be to verify (or even challenge) each technical component of
our system, as elaborated below:

Pseudocode. We designed the pseudocode order based on how
algorithm papers present their algorithm blocks. Is this design the
best approach among all the possible candidates? If not, how can
we further improve the design of pseudocode language?

Prompt Design. We leveraged the in-context learning capability
of LLMs in our prompt design. Prior work shows that few-shot
examples cause bias efects in practice [97], and thus, we encourage
future work to mitigate this bias by collecting a large dataset and
fnetuning LLM on the dataset.

Divide-and-conquer at Scale. We adopt the strategy of
divide-and-conquer [67] with a two-stage LLM pipeline. Despite
its efectiveness with a small node library and simple graphs, its
efectiveness is unknown when generating complex graphs. Ex-
ploring agent-based approaches [29, 34] with Retrieval Augmented
Generation (RAG) would be a promising future direction to manage
complex graph generation in a divide-and-conquer manner [67].
We encourage future work to contribute high-quality datasets as
well as an interactive LLM system with RAG that provides users
with better experiences from AI agents.

8.5 Evaluation Metrics and Long-term
Evaluation

In the technical evaluation, we assessed the performance of AI
assistants based on the number of user interactions. Existing related
metrics, predominantly from the code synthesis literature [2, 27],
largely focuses on two categories: correctness-based metrics [5, 10]
that rely on test case verifcation, and similarity-based metrics [75].
Very little research falls outside these two categories [59]. Our metric

12

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

incorporates human factors by objectively estimating user efort
through graph theory, addressing a gap in the visual programming
literature where human-centric considerations are crucial. While
our work advances metric development in this domain, further
formal research is essential to establish comprehensive standards
for visual programming evaluation.

In the user evaluation, we conducted a lab study to understand
the user experience of InstructPipe. As future work, we plan to
conduct longer-term studies and gather more realistic insights than
those we obtained from the lab study. This is critical for us to
understand the long-term usefulness of our assistant for beginners,
as well as collect feedback to inform our system design.

8.6 Responsible AI
InstructPipe currently cannot detect harmful data or misuse of AI.
We believe such safety features are crucial, especially in the context
of the potential for future dynamic node libraries, which would
greatly enhance the generalizability of ML pipeline prototyping
capability. Future work must study efective methods to eliminate
potential harmful uses when AI assistants become increasingly
open-ended.

9 Conclusion
This paper introduces InstructPipe, an AI assistant that empowers
users to accelerate their design of ML visual programming pipelines
using text instructions. We design and implement InstructPipe by
decomposing the task into three modules: a node selection module, a
code writer, and a code compiler. Results in our technical and system
evaluations suggest that InstructPipe provides users’ satisfactory
“on-boarding” experience of visual programming systems and
allows them to rapidly prototype an idea, potentially with more
than 5X fewer interactions. We further discuss the issues we
observed concerning LLMs in visual programming, related to
both human factors and technical implementations. We hope
that InstructPipe will inspire the community to continue work
in accelerated human-AI collaboration for increased expressivity
and creativity, for machine learning pipelines, and beyond.

Acknowledgments
We would like to thank Gong Xuan, Fengyuan Zhu, Kevin Zhang
and Karl Rosenberg for their feedback and discussion on our early-
stage prototype, as well as Koji Yatani and Takeo Igarashi for the
feedback on the paper draft. We also thank our reviewers for their
insightful feedback.

References
[1] 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorfow.org/ Software available from tensorfow.org.
[2] Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and

Hannaneh Hajishirzi. 2019. Mathqa: Towards interpretable math word problem
solving with operation-based formalisms. arXiv preprint arXiv:1905.13319 (2019).

[3] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang,
Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha,
James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng,
Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,

Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus
Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven
Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jefrey Hui, Jeremy
Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen
Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin
Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao
Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua
Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric
Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov,
Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro
Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone,
Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay
Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang,
John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin,
Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. PaLM 2 Technical Report. arXiv:2305.10403 [cs.CL]

[4] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and
Elena L. Glassman. 2024. ChainForge: A Visual Toolkit for Prompt Engineering
and LLM Hypothesis Testing. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 304, 18 pages. doi:10.1145/
3613904.3642016

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[6] Alan F Blackwell. 1996. Metacognitive theories of visual programming: what do
we think we are doing?. In Proceedings 1996 IEEE symposium on visual languages.
IEEE, 240–246.

[7] Stephen Brade, Bryan Wang, Mauricio Sousa, Sageev Oore, and Tovi Grossman.
2023. Promptify: Text-to-Image Generation through Interactive Prompt
Exploration with Large Language Models. In Proceedings of the 36th Annual
ACM Symposium on User Interface Software and Technology (San Francisco, CA,
USA) (UIST ’23). Association for Computing Machinery, New York, NY, USA,
Article 96, 14 pages. doi:10.1145/3586183.3606725

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-shot Learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901. doi:10.48550/arXiv.2005.
14165

[9] Liuqing Chen, Shuhong Xiao, Yunnong Chen, Yaxuan Song, Ruoyu Wu, and
Lingyun Sun. 2024. ChatScratch: An AI-Augmented System Toward Autonomous
Visual Programming Learning for Children Aged 6-12. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
’24). Association for Computing Machinery, New York, NY, USA, Article 649,
19 pages. doi:10.1145/3613904.3642229

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[11] Weihao Chen, Chun Yu, Huadong Wang, Zheng Wang, Lichen Yang, Yukun Wang,
Weinan Shi, and Yuanchun Shi. 2023. From Gap to Synergy: Enhancing Contextual
Understanding through Human-Machine Collaboration in Personalized Systems.
In Proceedings of the 36th Annual ACM Symposium on User Interface Software
and Technology (San Francisco, CA, USA) (UIST ’23). Association for Computing
Machinery, New York, NY, USA, Article 110, 15 pages. doi:10.1145/3586183.
3606741

[12] Shrestha Basu Mallick Chris Perry. 2023. AI-powered coding, free of charge with
Colab. Retrieved Sep 10, 2024 from https://blog.google/technology/developers/
google-colab-ai-coding-features/

[13] ComfyUI. 2023. ComfyUI. https://github.com/comfyanonymous/ComfyUI
[14] Chandan Datta, Chandimal Jayawardena, I Han Kuo, and Bruce A MacDonald.

2012. RoboStudio: A visual programming environment for rapid authoring
and customization of complex services on a personal service robot. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2352–2357.
doi:10.1109/IROS.2012.6386105

[15] Fernanda De La Torre, Cathy Mengying Fang, Han Huang, Andrzej Banburski-
Fahey, Judith Amores Fernandez, and Jaron Lanier. 2024. LLMR: Real-time
Prompting of Interactive Worlds using Large Language Models. In Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems (Honolulu,
HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY, USA,
Article 600, 22 pages. doi:10.1145/3613904.3642579

[16] Victor Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-
Agnostic Visualizations and Infographics using Large Language Models.
arXiv:2303.02927 [cs.AI] https://arxiv.org/abs/2303.02927

[17] Grifn Dietz, Nadin Tamer, Carina Ly, Jimmy K Le, and James A. Landay. 2023.
Visual StoryCoder: A Multimodal Programming Environment for Children’s
Creation of Stories. In Proceedings of the 2023 CHI Conference on Human Factors in

13

https://www.tensorflow.org/
https://arxiv.org/abs/2305.10403
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3586183.3606725
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1145/3613904.3642229
https://doi.org/10.1145/3586183.3606741
https://doi.org/10.1145/3586183.3606741
https://blog.google/technology/developers/google-colab-ai-coding-features/
https://blog.google/technology/developers/google-colab-ai-coding-features/
https://github.com/comfyanonymous/ComfyUI
https://doi.org/10.1109/IROS.2012.6386105
https://doi.org/10.1145/3613904.3642579
https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2303.02927
https://tensorflow.org

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 96, 16 pages. doi:10.1145/3544548.3580981

[18] Ruofei Du, Na Li, Jing Jin, Michelle Carney, Scott Miles, Maria Kleiner,
Xiuxiu Yuan, Yinda Zhang, Anuva Kulkarni, Xingyu Liu, Ahmed Sabie, Sergio
Orts-Escolano, Abhishek Kar, Ping Yu, Ram Iyengar, Adarsh Kowdle, and Alex
Olwal. 2023. Rapsai: Accelerating Machine Learning Prototyping of Multimedia
Applications Through Visual Programming. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 125,
23 pages. doi:10.1145/3544548.3581338

[19] Ruofei Du, Na Li, Jing Jin, Michelle Carney, Xiuxiu Yuan, Kristen Wright, Mark
Sherwood, Jason Mayes, Lin Chen, Jun Jiang, Jingtao Zhou, Zhongyi Zhou, Ping
Yu, Adarsh Kowdle, Ram Iyengar, and Alex Olwal. 2023. Experiencing Visual
Blocks for ML: Visual Prototyping of AI Pipelines. In Adjunct Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (UIST).
ACM. doi:10.1145/3586182.3615817

[20] K. J. Kevin Feng, Q. Vera Liao, Ziang Xiao, Jennifer Wortman Vaughan, Amy X.
Zhang, and David W. McDonald. 2024. Canvil: Designerly Adaptation for LLM-
Powered User Experiences. arXiv:2401.09051 [cs.HC] https://arxiv.org/abs/2401.
09051

[21] James Fogarty, Jodi Forlizzi, and Scott E. Hudson. 2001. Aesthetic information
collages: generating decorative displays that contain information. In Proceedings
of the 14th Annual ACM Symposium on User Interface Software and Technology
(Orlando, Florida) (UIST ’01). Association for Computing Machinery, New York,
NY, USA, 141–150. doi:10.1145/502348.502369

[22] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. 2010. A survey of graph
edit distance. Pattern Analysis and applications 13 (2010), 113–129.

[23] GitHub. 2023. GitHub Copilot · Your AI pair programmer. https://github.com/
features/copilot

[24] Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual Programming:
Compositional Visual Reasoning Without Training. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. arXiv. doi:10.48550/arXiv.2211.11559

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. doi:10.
1038/s41586-020-2649-2

[26] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research. In Advances in
psychology. Vol. 52. Elsevier, 139–183.

[27] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al.
2021. Measuring coding challenge competence with apps. arXiv preprint
arXiv:2105.09938 (2021).

[28] Thomas T Hewett. 2005. Informing the design of computer-based environments
to support creativity. International Journal of Human-Computer Studies 63, 4-5
(2005), 383–409.

[29] Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui.
2023. Agentcoder: Multi-agent-based code generation with iterative testing
and optimisation. arXiv preprint arXiv:2312.13010 (2023).

[30] Justin Huang and Maya Cakmak. 2017. Code3: A system for end-to-end
programming of mobile manipulator robots for novices and experts. In
Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. 453–462.

[31] Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation of a
rapid programming system for service robots. In 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 295–302.

[32] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian
Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. arXiv:2311.05232 [cs.CL] https:
//arxiv.org/abs/2311.05232

[33] HuggingFace. 2022. Spaces. https://huggingface.co/docs/transformers/
preprocessing

[34] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. 2024.
MapCoder: Multi-Agent Code Generation for Competitive Problem Solving. arXiv
preprint arXiv:2405.11403 (2024).

[35] Peiling Jiang. 2023. Positional Control in Node-Based Programming. In Extended
Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI EA ’23). Association for Computing Machinery, New
York, NY, USA, Article 231, 7 pages. doi:10.1145/3544549.3585878

[36] Peiling Jiang, Jude Rayan, Steven P Dow, and Haijun Xia. 2023. Graphologue:
Exploring Large Language Model Responses with Interactive Diagrams. arXiv
preprint arXiv:2305.11473 (2023).

[37] Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. 2024.
From LLMs to LLM-based Agents for Software Engineering: A Survey of Current,
Challenges and Future. arXiv:2408.02479 [cs.SE] https://arxiv.org/abs/2408.02479

[38] Jupyter-ai. 2024. Jupyter AI. Retrieved Sep 10, 2024 from https://github.com/
jupyterlab/jupyter-ai

[39] Jefrey Kodosky. 2020. LabVIEW. Proc. ACM Program. Lang. 4, HOPL, Article 78
(jun 2020), 54 pages. doi:10.1145/3386328

[40] Anastasia Kovalkov, Avi Segal, and Kobi Gal. 2020. Inferring Creativity in Visual
Programming Environments. In Proceedings of the Seventh ACM Conference on
Learning @ Scale (Virtual Event, USA) (L@S ’20). Association for Computing
Machinery, New York, NY, USA, 269–272. doi:10.1145/3386527.3406725

[41] LangChain. 2023. LangChain. https://www.langchain.com/
[42] LangChain. 2024. Promptim: an experimental library for prompt optimization.

Retrieved Nov 26, 2024 from https://blog.langchain.dev/promptim/
[43] LangFlow. 2023. LangFlow. https://github.com/logspace-ai/langfow
[44] Yang Li and James A. Landay. 2005. Informal Prototyping of Continuous

Graphical Interactions by Demonstration. In Proceedings of the 18th Annual
ACM Symposium on User Interface Software and Technology (Seattle, WA, USA)
(UIST ’05). Association for Computing Machinery, New York, NY, USA, 221–230.
doi:10.1145/1095034.1095071

[45] Ruibo Liu, Ruixin Yang, Chenyan Jia, Ge Zhang, Denny Zhou, Andrew M Dai,
Diyi Yang, and Soroush Vosoughi. 2023. Training socially aligned language
models on simulated social interactions. arXiv preprint arXiv:2305.16960 (2023).

[46] Xingyu Liu, Vladimir Kirilyuk, Xiuxiu Yuan, Alex Olwal, Peggy Chi, Xiang Chen,
and Ruofei Du. 2023. Visual Captions: Augmenting Verbal Communication With
On-the-fy Visuals. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (CHI). ACM, 20 pages. doi:10.1145/3544548.3581566

[47] Qianou Ma, Hua Shen, Kenneth Koedinger, and Sherry Tongshuang Wu. 2024.
How to teach programming in the ai era? using llms as a teachable agent for
debugging. In International Conference on Artifcial Intelligence in Education.
Springer, 265–279.

[48] Rishab Mitra, Arpit Narechania, Alex Endert, and John Stasko. 2022. Facilitating
Conversational Interaction in Natural Language Interfaces for Visualization. In
2022 IEEE Visualization Conference (VIS). IEEE. doi:10.48550/arXiv.2207.00189

[49] B. A. Myers. 1986. Visual Programming, Programming by Example, and Program
Visualization: A Taxonomy. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Boston, Massachusetts, USA) (CHI ’86). Association
for Computing Machinery, New York, NY, USA, 59–66. doi:10.1145/22627.22349

[50] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2021. NL4DV: A Toolkit for
Generating Analytic Specifcations for Data Visualization from Natural Language
Queries. IEEE Transactions on Visualization and Computer Graphics (TVCG) (2021).
doi:10.1109/TVCG.2020.3030378

[51] Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Carolyn Jane
Anderson, and Molly Q Feldman. 2024. How Beginning Programmers and Code
LLMs (Mis)read Each Other. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 651, 26 pages. doi:10.1145/
3613904.3642706

[52] Allan Paivio. 1969. Mental imagery in associative learning and memory.
Psychological review 76, 3 (1969), 241.

[53] Allan Paivio. 1991. Dual coding theory: Retrospect and current status. Canadian
Journal of Psychology/Revue canadienne de psychologie 45, 3 (1991), 255.

[54] Allan Paivio, James M Clark, et al. 2006. Dual coding theory and education.
Pathways to literacy achievement for high poverty children (2006), 1–20.

[55] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. arXiv:2304.03442 [cs.HC]

[56] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2022. Social Simulacra: Creating Populated
Prototypes for Social Computing Systems. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22).
Association for Computing Machinery, New York, NY, USA, Article 74, 18 pages.
doi:10.1145/3526113.3545616

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[58] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. 2023.
Gorilla: Large language model connected with massive apis. arXiv preprint
arXiv:2305.15334 (2023).

[59] Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. 2024. Benchmarks and
Metrics for Evaluations of Code Generation: A Critical Review. arXiv preprint
arXiv:2406.12655 (2024).

[60] Zhenhui Peng, Xingbo Wang, Qiushi Han, Junkai Zhu, Xiaojuan Ma, and Huamin
Qu. 2023. Storyfer: Exploring Vocabulary Learning Support with Text Generation
Models. arXiv:2308.03864 [cs.HC]

[61] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. 2023. Toolllm: Facilitating large language

14

https://doi.org/10.1145/3544548.3580981
https://doi.org/10.1145/3544548.3581338
https://doi.org/10.1145/3586182.3615817
https://arxiv.org/abs/2401.09051
https://arxiv.org/abs/2401.09051
https://arxiv.org/abs/2401.09051
https://doi.org/10.1145/502348.502369
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2211.11559
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://huggingface.co/docs/transformers/preprocessing
https://huggingface.co/docs/transformers/preprocessing
https://doi.org/10.1145/3544549.3585878
https://arxiv.org/abs/2408.02479
https://arxiv.org/abs/2408.02479
https://github.com/jupyterlab/jupyter-ai
https://github.com/jupyterlab/jupyter-ai
https://doi.org/10.1145/3386328
https://doi.org/10.1145/3386527.3406725
https://www.langchain.com/
https://blog.langchain.dev/promptim/
https://github.com/logspace-ai/langflow
https://doi.org/10.1145/1095034.1095071
https://doi.org/10.1145/3544548.3581566
https://doi.org/10.48550/arXiv.2207.00189
https://doi.org/10.1145/22627.22349
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://arxiv.org/abs/2304.03442
https://doi.org/10.1145/3526113.3545616
https://arxiv.org/abs/2308.03864

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789 (2023).
[62] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin

Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing
Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs.
arXiv:2307.16789 [cs.AI] https://arxiv.org/abs/2307.16789

[63] Subham Sah, Rishab Mitra, Arpit Narechania, Alex Endert, John Stasko, and
Wenwen Dou. 2024. Generating Analytic Specifcations for Data Visualization
from Natural Language Queries using Large Language Models. Presented at the
NLVIZ Workshop, IEEE VIS 2024. arXiv:2408.13391 [cs.HC] https://arxiv.org/
abs/2408.13391

[64] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves to use tools. Advances in
Neural Information Processing Systems 36 (2024).

[65] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2023. Towards Natural Language
Interfaces for Data Visualization: A Survey. IEEE Transactions on Visualization
and Computer Graphics 29, 6 (2023), 3121–3144. doi:10.1109/TVCG.2022.3148007

[66] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2024. Hugginggpt: Solving ai tasks with chatgpt and its friends in
hugging face. Advances in Neural Information Processing Systems 36 (2024).

[67] Douglas R Smith. 1985. The design of divide and conquer algorithms. Science of
Computer Programming 5 (1985), 37–58.

[68] Zefan Sramek, Arissa J. Sato, Zhongyi Zhou, Simo Hosio, and Koji Yatani. 2023.
SoundTraveller: Exploring Abstraction and Entanglement in Timbre Creation
Interfaces for Synthesizers. In Proceedings of the 2023 ACM Designing Interactive
Systems Conference (Pittsburgh, PA, USA) (DIS ’23). Association for Computing
Machinery, New York, NY, USA, 95–114. doi:10.1145/3563657.3596089

[69] Anselm Strauss, Juliet Corbin, et al. 1990. Basics of qualitative research. Vol. 15.
sage Newbury Park, CA.

[70] Anselm L Strauss. 1987. Qualitative analysis for social scientists. Cambridge
university press.

[71] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: Enabling
Multilevel Exploration and Sensemaking with Large Language Models. arXiv
preprint arXiv:2305.11483 (2023).

[72] Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. Vipergpt: Visual inference
via python execution for reasoning. arXiv preprint arXiv:2303.08128 (2023).

[73] William Robert Sutherland. 1966. The on-line graphical specifcation of computer
procedures. Ph. D. Dissertation. Massachusetts Institute of Technology.

[74] Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong Zhang,
and Yingcai Wu. 2024. Chartgpt: Leveraging llms to generate charts from abstract
natural language. IEEE Transactions on Visualization and Computer Graphics
(2024).

[75] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. 2019.
Does BLEU score work for code migration?. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). IEEE, 165–176.

[76] Unity. 2023. Unity’s Graph Editor. https://docs.unity.cn/Packages/com.unity.
visualscripting@1.7/manual/vs-interface-overview.html#the-graph-editor

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is
All You Need. Advances in Neural Information Processing Systems 30 (2017).
doi:10.5555/3295222.3295349

[78] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling Conversational Interaction
With Mobile UI Using Large Language Models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 432,
17 pages. doi:10.1145/3544548.3580895

[79] Xinru Wang, Hannah Kim, Sajjadur Rahman, Kushan Mitra, and Zhengjie Miao.
2024. Human-LLM Collaborative Annotation Through Efective Verifcation of
LLM Labels. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery,
New York, NY, USA, Article 303, 21 pages. doi:10.1145/3613904.3641960

[80] Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiaqi Wang, He Huang,
Haidong Zhang, and Dongmei Zhang. 2023. Towards Natural Language-Based
Visualization Authoring. IEEE Transactions on Visualization and Computer
Graphics 29, 1 (2023), 1222–1232. doi:10.1109/TVCG.2022.3209357

[81] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[82] Chao Wen, Jacqueline Staub, and Adish Singla. 2024. Program Syn-
thesis Benchmark for Visual Programming in XLogoOnline Environment.
arXiv:2406.11334 [cs.AI] https://arxiv.org/abs/2406.11334

[83] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s Transformers: State-of-the-Art Natural Language Processing.
ArXiv Preprint ArXiv:1910.03771 (2019). https://arxiv.org/pdf/1910.03771

15

[84] Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jef Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. PromptChainer: Chaining Large Language
Model Prompts through Visual Programming. In Extended Abstracts of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI EA ’22). Association for Computing Machinery, New York, NY, USA, Article
359, 10 pages. doi:10.1145/3491101.3519729

[85] Tongshuang Wu, Marco Tulio Ribeiro, Jefrey Heer, and Daniel S. Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving
Models. arXiv:2101.00288 [cs.CL]

[86] Tongshuang Wu, Michael Terry, and Carrie Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In CHI Conference on Human Factors in Computing Systems. ACM.
doi:10.1145/3491102.3517582

[87] Shunyu Yao, Jefrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL]

[88] Hui Ye, Jiaye Leng, Pengfei Xu, Karan Singh, and Hongbo Fu. 2024. ProInterAR:
A Visual Programming Platform for Creating Immersive AR Interactions. In
Proceedings of the CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York,
NY, USA, Article 610, 15 pages. doi:10.1145/3613904.3642527

[89] Zhengyan Yu, Hun Namkung, Jiang Guo, Henry Milner, Joel Goldfoot, Yang
Wang, and Vyas Sekar. 2024. SEAM-EZ: Simplifying Stateful Analytics through
Visual Programming. In Proceedings of the CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing
Machinery, New York, NY, USA, Article 1041, 23 pages. doi:10.1145/3613904.
3642055

[90] J.D. Zamfrescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 437, 21 pages. doi:10.1145/3544548.
3581388

[91] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool for
Creating Interactive Scenes in Virtual Reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 342–353.
doi:10.1145/3379337.3415824

[92] Lei Zhang, Jin Pan, Jacob Gettig, Steve Oney, and Anhong Guo. 2024. VRCopilot:
Authoring 3D Layouts with Generative AI Models in VR. In Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology (Pittsburgh,
PA, USA) (UIST ’24). Association for Computing Machinery, New York, NY, USA,
Article 96, 13 pages. doi:10.1145/3654777.3676451

[93] Yongqi Zhang, Cuong Nguyen, Rubaiat Habib Kazi, and Lap-Fai Yu. 2023.
PoseVEC: Authoring Adaptive Pose-aware Efects Using Visual Programming and
Demonstrations. In ACM Symposium on User Interface Software and Technology.

[94] Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang. 2021. Efcient
lottery ticket fnding: Less data is more. In International Conference on Machine
Learning. PMLR, 12380–12390.

[95] Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. arXiv preprint arXiv:2304.07810 (2023).

[96] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
Before Use: Improving Few-shot Performance of Language Models. In Proceedings
of the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 12697–
12706. https://proceedings.mlr.press/v139/zhao21c.html

[97] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
Before Use: Improving Few-shot Performance of Language Models. In Proceedings
of the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 12697–
12706. https://proceedings.mlr.press/v139/zhao21c.html

[98] Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu Yuan, Jun Jiang, Xun Qian,
Jingtao Zhou, Yiyi Huang, Zheng Xu, Yinda Zhang, Kristen Wright, Jason Mayes,
Mark Sherwood, Johnny Lee, Alex Olwal, David Kim, Ram Iyengar, Na Li, and
Ruofei Du. 2024. Experiencing InstructPipe: Building Multi-modal AI Pipelines
via Prompting LLMs and Visual Programming. In Extended Abstracts of the CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
EA ’24). Association for Computing Machinery, New York, NY, USA, Article 402,
5 pages. doi:10.1145/3613905.3648656

[99] Zhongyi Zhou and Koji Yatani. 2022. Gesture-Aware Interactive Machine
Teaching with In-Situ Object Annotations. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology (Bend, OR, USA)
(UIST ’22). Association for Computing Machinery, New York, NY, USA, Article
27, 14 pages. doi:10.1145/3526113.3545648

https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2408.13391
https://arxiv.org/abs/2408.13391
https://arxiv.org/abs/2408.13391
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.1145/3563657.3596089
https://docs.unity.cn/Packages/com.unity.visualscripting@1.7/manual/vs-interface-overview.html#the-graph-editor
https://docs.unity.cn/Packages/com.unity.visualscripting@1.7/manual/vs-interface-overview.html#the-graph-editor
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3613904.3641960
https://doi.org/10.1109/TVCG.2022.3209357
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.11334
https://arxiv.org/abs/2406.11334
https://arxiv.org/pdf/1910.03771
https://doi.org/10.1145/3491101.3519729
https://arxiv.org/abs/2101.00288
https://doi.org/10.1145/3491102.3517582
https://arxiv.org/abs/2210.03629
https://doi.org/10.1145/3613904.3642527
https://doi.org/10.1145/3613904.3642055
https://doi.org/10.1145/3613904.3642055
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3379337.3415824
https://doi.org/10.1145/3654777.3676451
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.1145/3613905.3648656
https://doi.org/10.1145/3526113.3545648

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Appendix

A A Full List of 27 Nodes in InstructPipe
The following content shows 27 nodes InstructPipe covers in the
generation process and their corresponding short description used
in the Node Selector (section 4.2):

A.1 Input Nodes
(1) live_camera: Capture video stream through your device

camera.
(2) input_image: Select images to use as input to your pipeline.

You can also upload your own images.
(3) input_text: Add text to use as input to your pipeline.

A.2 Output Nodes
(1) image_viewer: View images.
(2) threed_photo: Create a 3D photo efect from depthmap

tensors.
(3) markdown_viewer: Render Markdown strings into stylized

HTML.
(4) html_viewer: Show HTML content with styles

A.3 Processor Nodes
(1) google_search: Use Google to search the web that returns a

list of URLs based on a given keyword; usually selected with
string_picker.

(2) body_segmentation: Segment out people in images; usually
selected with mask_visualizer.

(3) tensor_to_depthmap: Display tensor data as a depth map.
(4) portrait_depth: Generate a 3D depth map for an image;

usually selected with tensor_to_depthmap, threed_photo.
(5) face_landmark: Detect faces in images. Each face contains

468 keypoints; usually selected with landmark_visualizer,
virtual_sticker.

(6) pose_landmark: Generate body positional mappings for
people detected in images; usually selected with land-
mark_visualizer.

(7) image_processor: Process an image (crop, resize, shear,
rotate, change brightness or contrast, add blur or noise).

(8) text_processor: Reformat and combine multiple text inputs.
(9) mask_visualizer: Visualize masks.
(10) string_picker: Select one string from a list of strings; usually

used with google_search.
(11) image_mixer: Combine images and text into one output

image. Requires two image inputs.
(12) virtual_sticker: Use face landmarks data to overlay virtual

stickers on images.
(13) palm_textgen: Generate Text using a large language model.
(14) keywords_to_image: Search for images by keywords.
(15) url_to_html: Crawl the website by a given URL.
(16) image_to_text: Extract text from an image using OCR

service.
(17) pali: Answer questions about an image using a vision-

language model.

{
 "nodeSpecId": "body_segmentation",
 "description": "Segment out people in images.",
 "category": "processor",
 "inputSpecs": {
 "image": {
 "type": "image"
 }
 },
 "outputSpecs": {
 "segmentationResult": {
 "type": "masks",
 "recommendedNodes": [
 "mask_visualizer"
]
 }
 },
 "examples": [
 "live_camera_xhjtec:
live_camera();\nbody_segmentation_xctd1p_out =
body_segmentation_xctd1p:
body_segmentation(image=live_camera_xhjtec);\nmask_visualizer_frjz
ga_out = mask_visualizer_frjzga:
mask_visualizer(image=live_camera_xhjtec,
segmentationResult=body_segmentation_xctd1p_out);\n"
]
}

(a) Body segmentation

{
 "nodeSpecId": "pali",
 "description": "Answer questions about an image using a
vision-language model.",
 "category": "processor",
 "inputSpecs": {
 "image": {
 "type": "image"
 },
 "prompt": {
 "type": "string"
 }
 },
 "outputSpecs": {
 "answer": {
 "type": "string"
 }
 },
 "examples": [
 "input_image_f1ohfa: input_image();\ninput_text_04ejnm:
input_text(text=\"What is the person in the image
doing?\");\npali_2pzuwn_out = pali_2pzuwn:
pali(image=input_image_f1ohfa,
prompt=input_text_04ejnm);\nmarkdown_viewer_6wqe86:
markdown_viewer(markdownString=pali_2pzuwn_out);\n"
]
}

(b) PaLI
Figure 10: Examples of node confguration used in Code
Writer. The confguration is structured in a JSON format.

(19) imagen: Generate an image based on a text prompt.
(20) input_sheet: Read string data from Google Sheets.

16

(18) palm_model: Generate text using a large language model
based on prompt and context.

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

B System Implementation Algorithm 1: Code Interpreter
B.1 System Prompts Used in LLM Modules
Here we provide more details about the prompts we utilized
in InstructPipe. The original txt fles are also attached in the
supplementary zip fle.

B.1.1 Node Selector. Please see our supplementary fle
(node_select.txt) for the full prompt we use in this stage.

B.1.2 Code Writer. The prompt in Code Writer is dynamic, which
is dependent on the nodes chosen in Node Selector. Therefore,
we cannot provide all the possible prompts in the supplementary
materials. Here, we will focus on providing examples of two detailed
node confgurations utilized in InstructPipe. Figure 6 shows the
structure of the prompt utilized in this LLM stage. Figure 10 provides
two examples of node confgurations (i.e., “Body segmentation” and
“PaLI”) that InstructPipe may chose into the highlighted line(s).
Each confguration includes keys of “nodeSpecId” (i.e., node types),
“description”, “category” and “examples”. For those nodes that
support input and output edges, “inputSpecs” and “outputSpecs”
specify the sockets and their corresponding valid data types.
For example, the output socket name of “Body segmentation” is
“segmentationResult”, and its data type is “masks”. Some nodes (e.g.,
“Body segmentation”) include recommended node(s) (e.g., “Mask
visualizer” for “Body segmentation”), and our confguration also
contains such information in the dictionary.

B.2 Code Interpreter
Here, we provide more low-level implementation details on Code
Interpreter. The Code Interpreter parses generated pseudocode
into a visual programming pipeline for visualization at the Visual
Blocks workspace. Figure 12 shows the data type defnition of
graphs, nodes, and edges in the system. The example JSON fle to
be parsed into the Typescript interface is available at the Visual
Blocks website5. Our code defnes a visual programming pipeline
into an array of serialized nodes, � (�). When the user adds a
new node to a pipeline, it adds a new “SerializedNode”, containing
the edge defnition between this new node and other nodes in the
current workspace, to the current “SerialedGraph”. This mechanism
ensures that nodes can be incrementally added in the order they
appear in the pseudocode order while maintaining the integrity of
the graph by clearly defning dependencies and data fow between
nodes. Algorithm 1 further shows how InstructPipe parses code
and incrementally adds nodes to formulate a fnal serialized graph.

C Technical Evaluation

C.1 Data Post-Processing
After the workshops, one author carefully examined each collected
pipeline and found several critical issues in the raw data:

• Incomplete pipelines. There exist pipelines uploaded by
the participants that were incomplete.

• Isolated graphs. There exist pipelines that include at least
one isolated subgraph. The isolated subgraph, as opposed to

5https://visualblocks.withgoogle.com/. The JSON fle is available for data structure
exploration by 1) entering an example project and 2) clicking on the “Export” button
on the top-right corner.

1

2

3

4

5

6

7

8

9

10

11

12

Input: � : the generated texts (i.e., pseudocode) in the string
format.

Output: � (�): a visual programming pipeline
(��������������ℎ) that mainly stores an array of
��������������� (Figure 12).
Variables: � : a dictionary of parsed tokens that contains
������_��������_�� , ����_�� , ����_���� ,
����_���������; � : the incoming edges of a new node, in
the format of ����������������������; �: a new node in
the format of �������������� .

� : �������������� [] = [] // Initialize � as an
empty array

����� = ����_������ (�) // Parse � into lines of code
with no pseudocode order changed.

for ���� in ����� do
/* Example: */
/* ����_1_��� = ����_1 : ���� (����� =

�����_�����_1, ������ = �����_����_1) */
/* –> */
/* ‘����_1_���’, ‘����_1’, ‘����’ and

[‘����� = �����_�����_1’, ‘������ = �����_����_1’]
*/

� = ��������� (����)

� : ������������� = ������_��������_����� (�)
// create incoming edges for the new node

� : �������������� = ������_���� (�, �) // create a
new SerializedNode with the incomingEdges
and the parsed dictionary

�.���_�������������� (�) // add the new
SerializedNode to the graph

� = �����_������ (�) // Perform the UI layout
optimization, as shown in Figure 11

return �

the main graph, is defned as a graph (or a node) that has no
connection to the main graph in the pipeline that provides
the main functionality of the pipeline (e.g., the “Image viewer”
node on the bottom-left corner of Figure 11b). We observed
that some participants typically would like to explore the
system by working on a separate sub-space. While we
acknowledge its usefulness, leaving such “redundant” graphs
in the raw data for the evaluation would cause issues when
we calculate the number of user interactions (i.e., the metric
used in the evaluation that will be defned in the next
subsection).

• Low-quality captions. While we explicitly required the
participants to write descriptive captions, we found some
captions written by the participants were either empty
or low-quality (e.g., “newsletter”, “image editing” and
“[participant name]-demo”).

17

https://visualblocks.withgoogle.com/

(a) Before layout optimization. (b) After layout optimization.
Figure 11: A comparison of the same generated pipeline before and after layout optimization.

/** A serialized graph. */
export declare interface SerializedGraph {

nodes: SerializedNode[];

/** other properties */
}

/** A serialized node. */
export declare interface SerializedNode {

/** The id of the node, e.g., pali_1. */
id: string;

/** The node spec id, e.g., pali. */
nodeSpecId: string;

/**
* Serialized incoming edges that
* connect to this node.
*/
incomingEdges?: {

[inputId: string]: SerializedIncomingEdge[]
};

/** other properties */
}

/** A serialized incoming edge. */
export declare interface SerializedIncomingEdge {

/** The id of the source node. */
sourceNodeId: string;

/** The id of the output in the source node. */
outputId: string;

}

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Figure 12: The defnition of a graph, a node and an edge
in the system using the Typescript language. Only the core
properties of graphic structure defnition are presented in
this fgure.

The observation motivated us to post-process the raw data
to present more rigorous evaluation results. We frst removed
incomplete pipelines and the isolated graphs in each pipeline (if
there are any).

To further enhance the annotation quality, two authors
individually annotated the caption of each pipeline separately
by referring to the original captions and pipelines authored by
the participants. It is important to note that we fnished the
workshop and the data annotation task before we completed the
system implementation. The two authors had no experience using
InstructPipe before completing the annotation. We believed this
process could efectively enhance the quality of the captions while
maintaining the fairness of the technical evaluation.

As we clarifed in section 5.1, the workshop is designed to be
an open-ended creation process. This indicates that the dataset
inevitably includes out-of-scope nodes like “custom scripts” (in
which the participants write code to process the input data and
return custom outputs; see Figure 13b for an example) and “TFLite
model runner” (which call a custom TensorFlow model with a URL
input of the model in the TF-Hub).

We removed the pipelines that contain node(s) out of our focus
27 nodes, and selected all the remaining pipelines as our fnal
evaluation set. We argue that this post-processing is critical for
reporting a fair accuracy value since InstructPipe can only generate
pipelines based on its known node library. The fnal 48 pipelines
(out of 64 pipelines) are comprised of 23 language pipelines, seven
visual pipelines, and 18 multi-modal pipelines. Figure 13 shows
three pipelines created by the participants. Figure 13b is an example
of the pipelines that include out-of-scope nodes, and therefore are
not included in the fnal 48 pipelines. In the technical evaluation,
we ran our generation algorithm on the pipeline captions six times
(three times for each caption × two captions from two authors for
each pipeline) and evaluated the generation results using the metric
that will be introduced below.

C.2 Evaluation Metric: The Number of User
Interactions

Our defnition of the number of user interactions has two important
implications. First, a complete pipeline after user interaction does
not need to be the same as the corresponding pipeline in the dataset.
As long as it fulflls the task described in the caption, we consider
the pipeline complete. Second, our defnition does not consider
interactions of modifying the node parameters, e.g., typing in a text
box or selecting a value in a drop-down box. We argue that such
interactions are highly node-dependent and are hard to quantify

18

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

(a) Search news from Google, summarize it, and then conduct a fact check. Input: a keyword for Google Search; Output: a summarization of the
news and a fact-check result.

(b) Generating an emoji from a photo. Input: a photo uploaded by the user; Output: an emoji generated from the photo.

(c) Turning a tiger into a cat. Input: an image of a tiger; Output: an image of a cat.
Figure 13: Example pipelines participants built in the workshops.

19

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

objectively. More importantly, as we explain in section 4.1, the
generation of node parameters is out of the scope of this work.

In the technical evaluation with various pipelines, it is unfair
to report an averaged absolute value of user interactions because
the complexity of the pipelines varies dramatically. For instance,
the user may need to make three edits based on a generated result
to complete a large pipeline that requires 20 edits from scratch.
In another pipeline, the user also needs to do three edits starting
from the generated result, but the whole pipeline only takes three
edits to fnish. Averaging these absolute values does not provide
reasonable insights into how accurate the generation is. Therefore,
we reported an averaged ratio of user interactions required to
complete a pipeline “from our generated pipeline” to that “from
scratch” as our target metric in the technical evaluation.

D User Evaluation

D.1 Semi-structured Interview Script
[Introduction] (Start timing! 60 min max.)
Hello, my name is X.
First, I would like to thank you for your participation and

completing the consent form. Today, you will be a participant in a
user study regarding machine learning and visual programming.
Your data will be kept anonymous. Additionally, as a researcher I
have no position on this topic and ask that you be as open, honest,
and detailed in your answers as possible. Do you have any questions
before we begin?

Basically, visual programming borrows the metaphor of block
building and allows novice users to develop digital functionalities
without writing codes.

[Show Visual Blocks]
Here, each block is called a node, and each node takes in specifc

inputs, then returns the desired outputs. What you can do is to
connect a series of nodes together as a pipeline to achieve a high-
level goal.

We are going to walk you through our Visual Blocks system and
ask you to actually use Visual Blocks in two conditions to create a
few applications.

[Tutorial](Start timing! 10 min max.)
Before we get started, let us do a tutorial of our system.
[Study and TLX](Start timing! about 30 min)
[Leverage the counter-balanced sheet and give user a task]
[Think aloud. Have a short discussion with the user. What’s the

user’s plan to achieve this given functionality?]
[Interview](Start timing! about 15 min)
1. What’s your impression of Visual Blocks / InstructPipe

[counterbalanced]? Do you need many edits / operations to make
it work?

2. Are there any pipelines you come up with in work scenarios /
casual scenarios?

3. What works with InstructPipe? In what specifc scenarios will
InstructPipe be very helpful?

4. What does not work with InstructPipe? Would you give me
an example?

5. Do you have any suggestions to improve the design of both
systems?

6. Which kinds of technologies would be interesting to add?

7. What applications do you want to start with InstructPipe?
And what applications do you want start without it?

That’s all for our user study. Thank you for your participation
and we will compensate for your time.

D.2 User Study Pipelines
Figure 14 and Figure 15 visualize two pipelines we required the
participants to complete in our user study. Figure 15 is a multimodal
pipeline that allows participants to interact with AR efects in
real time. Our technical evaluation shows that InstructPipe can
generate this pipeline accurately: the averaged ratio of human
interactions = 5.2%. Figure 15 is a text-based pipeline that provides
participants with a summary of the news searched from Google.
The technical evaluation reveals that InstructPipe cannot generate
this pipeline accurately without further human interaction, and the
average ratio of additional human interactions is 27.8%. While the
generated diagram (with error) is not deterministic, we observed
that InstructPipe commonly generates the pipeline in Figure 14
without “URL to HTML” or “PaLM Text Generator” nodes. The
error implies that the LLM may misinterpret 1) the data from the
“selected text” port of the “String picker” node is the texts on the
web instead of the web URL and 2) that “Text processor” has the
LLM capability to process the texts instead of simply combining
two texts.

Note that even though InstructPipe may be able to complete the
pipeline structure in Figure 15 from users’ instruction, we observed
that participants still need to fne-tune their keywords to get an
ideal pair of sunglasses. Additionally, the default anchor value is
“Face top”, so participants need to use the drop-down menu on the
“Virtual sticker” node to change the value to “Eyes”. This further
motivates us to use the metric of “Time” in addition to the number
of user interactions in our study. Our demo video also covers the
workfows of these two pipelines.

D.3 Assistant Provided to the Participants in the
User Evaluation

In the user evaluation, our goal is to make the interface condition
(either InstructPipe or Visual Blocks) as the only independent
variable that changes our dependent variables (section 5.2). Similar
to user evaluations of other early-stage HCI research, we had to
improvise for lacking system afordances. As an example, we would
include help menus and error recovery models in the future versions
of our system, but at this early stage, we relied on in-person help
to nudge and assist our user study participants. We took actions
(i.e., assistants) in the user evaluation to ensure the study is under
an appropriate amount of control as well as maintain the fairness
of our study.

Here, we elaborate on two examples of assistants we provided
in the user study.

In the InstructPipe condition, one participant started their
“instructions” by dragging a text box into the visual programming
workspace and began typing. When noticing this issue, we kindly
asked the participant whether s/he wanted to write instructions
or build a pipeline from scratch. S/he then noticed this issue and
clicked on the “InstructPipe” button to write prompts. Note that
we explicitly taught every participant how to use InstructPipe

20

InstructPipe CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Table 3: Participant demographics for the user study, showing various demographic characteristics and skills relevant to
InstructPipe.

ID Job Title Self-identified
Gender

Age
Group

Programming
Experience

Machine
Learninig Skill

LLM
Usage

P1 Product Manager Woman 25 - 34 Beginner Beginner At least once a month
P2 Image Tuning Engineer Man 35 - 44 Intermediate Beginner At least once a week
P3 Program Manager Woman 45 - 54 No experience No experience At least once a week
P4 Hardware Engineer Man 35 - 44 Intermediate No experience At least once a month
P5 Technical Program Manager Man 35 - 44 Beginner No experience At least once a day
P6 Senior Hardware Engineer Man 35 - 44 Beginner No experience At least once a month
P7 Technical Program Manager Woman 18 - 24 Beginner Beginner Never used it
P8 Technical program manager Man 25 - 34 No experience No experience Multiple hours every day
P9 Solutions Engineer Man 25 - 34 Beginner No experience At least once a month

P10 Program Manager Man 55 - 64 Beginner Beginner At least once a month
P11 Program Manager Woman 35 - 44 No experience No experience Never used it
P12 Lab Manager Man 35 - 44 Intermediate Beginner At least once a week
P13 Partner Development Manager Man 25 - 34 Beginner Beginner At least once a week
P14 Hardware Engineer Man 25 - 34 Beginner Beginner At least once a week
P15 Global Supply Manager Man 25 - 34 Beginner No experience At least once a month
P16 Global Supply Manager Woman 55 - 64 No experience No experience At least once a week

Figure 14: Text-based pipeline. The “String picker” node provides users a drop-down menus to select one URL from a list of
URLs returned by “Google Search”. “PaLM Text Generator” is an LLM used to summarize the full HTML page.

Figure 15: Real-time multimodal pipeline. The “Keyword to
image” node is used to search a sunglasses image, and the
“Virtual sticker” node anchors the sunglasses onto the user’
face.

and asked participants themselves to go through the instruction
processes in the training task (Figure 7).

In the Visual Blocks condition, one participant frst dragged a
“Virtual sticker” into the workspace when s/he wanted to build
the multimodal pipeline as required (Figure 15). After a while,
s/he asked us for the meaning of “landmarks” on the frst input
port of the “Virtual sticker” node (Figure 15). We then answered
this question and provided a hint on the “Face landmark” node
(Figure 15) that could produce the “Face landmarks” required by
the “Virtual sticker”. While we had explained all the nodes that the

participants need to use in the study in the training task (Figure 7),
we consider such technical questions reasonable because all of
our participants are non-experts. Programming itself is a difcult
skill, and it is quite common that people may forget some of the
knowledge that they have just learned. Instead of being silent and
keeping the participants stuck on a technical issue, we believed
ofering technical help was an important action we must take to
ensure the data quality we collected in the study.

These anecdotes in the user evaluation reveal several limitations
of the visual programming system: some designs may not be very
intuitive to non-experts. Since the goal of our user evaluation is
understanding the benefts of InstructPipe compared to Visual
Blocks (without AI assistants), we made our best eforts to
take action to prevent the efects caused by other factors from
infuencing our data. Meanwhile, we also encourage future work
to further explore the system design so that future users can more
easily use our assistant in visual programming.

21

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Table 4: The counterbalance sheet of the user evaluation. Each cell is in the format of “Interface / Pipeline”. “Instruct” and “VB”
mean the “InstructPipe” and “Visual Blocks” conditions, respectively. “Search” and “Tryon” represent the “text-based pipeline”
(Figure 14) and the “real-time multimodal pipeline” (Figure 15), respectively.

ID Step 1 Step 2 Step 3 Step 4
P1 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P2 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P3 Instruct / Search Instruct / Tryon VB / Search VB / Tryon
P4 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P5 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P6 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P7 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P8 Instruct / Search Instruct / Tryon VB / Search VB / Tryon
P9 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P10 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P11 Instruct / Search Instruct / Tryon VB / Search VB / Tryon
P12 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P13 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P14 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P15 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P16 Instruct / Search Instruct / Tryon VB / Search VB / Tryon

D.4 Counter-Balancing and The Replication
Number

Table 4 presents how we perform counterbalance in the user evalu-
ation. We counterbalanced both the interface factor (“InstructPipe”
and “Visual Blocks”) and the pipeline factors to reduce the learning
efects. We then replicated the order four times so that we collected
multiple data from diferent participants in each unique study order.
This helps strengthen the power of the data we collected in the
study. Note that, in the group of P5 - P8, we fipped the orders
within P5 and P6 as well as P7 and P8, but this does not cause a
diference in the counterbalance process.

22

	Abstract
	1 Introduction
	2 Related Work
	2.1 Visual Programming
	2.2 Interactive Systems with LLMs

	3 InstructPipe
	3.1 User Workflow
	3.2 Primitive Nodes

	4 Pipeline Generation from Instructions
	4.1 Pipeline Representation
	4.2 Node Selector
	4.3 Code Writer
	4.4 Code Interpreter

	5 Technical Evaluation
	5.1 Data Collection
	5.2 Metric: The Number of User Interactions
	5.3 Experiment Setups and Results

	6 User Evaluation
	6.1 Study Design
	6.2 Procedure
	6.3 Participants
	6.4 Metrics
	6.5 Results

	7 Discussion
	7.1 Human-AI Collaboration in Prototyping Open-ended ML Pipelines
	7.2 Three Attributes to Mental Workload
	7.3 Instructing LLMs Poses Challenges for Both Novices and, Potentially, Experts

	8 Limitations and Future Work
	8.1 Assisting Humans to Prompt AI Copilot in Visual Programming
	8.2 Node Parameter Tuning
	8.3 A Larger and Dynamic Node Library
	8.4 Refining System Component Design
	8.5 Evaluation Metrics and Long-term Evaluation
	8.6 Responsible AI

	9 Conclusion
	Acknowledgments
	References
	A A Full List of 27 Nodes in InstructPipe
	A.1 Input Nodes
	A.2 Output Nodes
	A.3 Processor Nodes

	B System Implementation
	B.1 System Prompts Used in LLM Modules
	B.2 Code Interpreter

	C Technical Evaluation
	C.1 Data Post-Processing
	C.2 Evaluation Metric: The Number of User Interactions

	D User Evaluation
	D.1 Semi-structured Interview Script
	D.2 User Study Pipelines
	D.3 Assistant Provided to the Participants in the User Evaluation
	D.4 Counter-Balancing and The Replication Number

