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Figure 1: Workfow of InstructPipe. First, users describe their desired pipeline in natural language and designate it with a 
language, image, or multi-modal tag. InstructPipe then feeds user instructions into a node selector to identify a relevant set 
of nodes. Subsequently, both the instructions and the relevant nodes with their description are input into a code writer to 
produce pseudocode. Finally, a code interpreter parses the pseudocode, rectifes errors, and compiles a JSON-formatted pipeline, 
allowing users to refne and interact with it further within Visual Blocks’s node-graph editor. 
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Abstract 
Visual programming has the potential of providing novice program-
mers with a low-code experience to build customized processing 
pipelines. Existing systems typically require users to build pipelines 
from scratch, implying that novice users are expected to set up and 
link appropriate nodes from a blank workspace. In this paper, we 
introduce InstructPipe, an AI assistant for prototyping machine 
learning (ML) pipelines with text instructions. We contribute two 
large language model (LLM) modules and a code interpreter as 
part of our framework. The LLM modules generate pseudocode 
for a target pipeline, and the interpreter renders the pipeline in 
the node-graph editor for further human-AI collaboration. Both 
technical and user evaluation (N=16) shows that InstructPipe 
empowers users to streamline their ML pipeline workfow, reduce 
their learning curve, and leverage open-ended commands to spark 
innovative ideas. 

CCS Concepts 
• Computing methodologies → Visual analytics; Machine 
learning; • Software and its engineering → Visual languages. 

Keywords 
Visual Programming; Large Language Models; Visual Prototyping; 
Node-graph Editor; Graph Compiler; Low-code Development; Deep 
Neural Networks; Deep Learning; Visual Analytics 
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1 Introduction 
A visual programming interface provides users with a node-graph 
editor to program through interaction with visual elements. As 
opposed to writing code in a code editor, the node graph allows 
users to design pipelines by confguring nodes and connecting them 
with edges in a visual workspace. This alternative user interface 
approach often accelerates experimentation and exploration in 
the prototyping phases of creative applications, and can make 
advanced technology more accessible to beginners. Advances 
in machine learning (ML) further stimulate growing interest in 
visual programming. Open-source ML hubs (e.g., TF-Hub [1], 
PyTorch-Hub [57], and Hugging Face [83]) contribute large 
numbers of encapsulated modules that accelerate AI project 
development and experimentation, and such libraries provide 
important resources for an ML-based visual programming platform. 
Recent advancements in large language models (LLMs) [3, 8, 77] 
and fndings on Chain-of-Thought [81] have further stimulated 
community-wide interest in visual programming [4, 19, 84, 86], 
suggesting further potential in the interactive exploration of AI 
chains. 

Despite the development of visual programming platforms in 
various domains, we observed that existing systems share one 

similar characteristic: users usually initiate a creative process in the 
workspace “from scratch”. This implies that users need to 1) select 
nodes, 2) ideate the pipeline structure, and fnally, 3) connect nodes 
within a completely empty workspace. As was also highlighted in 
existing literature in programming tools [92, 95], such processes 
can easily overwhelm users, especially those who are unfamiliar 
with a particular visual programming platform. Providing pipeline 
templates may reduce on-boarding eforts [9, 21], but the templates 
inherently lack fexibility and are not easily adaptable to users’ 
specifc needs. Similar issues also arise when users write programs 
using text-based editors (there exist many built-in functions in 
a particular programming language and multiple variables in a 
program), but advances in LLM assistants show that such challenges 
can be efectively reduced. For example, GitHub Copilot [23] enables 
users to generate code by simply describing users’ requirements in 
natural language. Even though the generated code is not absolutely 
correct, the AI assistance usually fnishes a large portion of the task, 
and programmers may only need to make a few edits to achieve a 
correct result [12, 38]. To this end, we raise the following question 
that motivates our work: How can we build visual programming 
assistants to accelerate the design and prototyping of ML pipelines? 

This paper introduces InstructPipe, a visual programming AI 
assistant that enables ML pipeline generation and design through 
natural language instructions. InstructPipe facilitates node connec-
tion and selection, allowing users to focus on more creative tasks 
like parameter tuning and interactive analysis within the visual 
programming workspace. We focus our AI assistant exploration 
on ML-based pipelines, and therefore implemented InstructPipe as 
an extension to Visual Blocks [18], a visual programming system 
for prototyping ML pipelines. One major technical challenge in 
implementing InstructPipe lies in the lack of visual programming 
data, making it impractical to fnetune a dedicated code-LLM similar 
to how developers build text-editor-based copilots [12, 23, 38]. We 
addressed this issue by decomposing the generation process into 
three steps (Figure 1). InstructPipe’s frst LLM module scopes the 
potentially useful nodes, while the second LLM module generates 
pseudocode for a pipeline. InstructPipe then parses the pseudocode 
and renders the pipeline in the node-graph editor to facilitate 
further user interaction. Our technical evaluation suggests that 
InstructPipe reduces the necessary user interactions by 81.1% when 
users select and connect nodes, compared to building them from 
scratch. This can potentially streamline the development process, 
and allows users to focus on more novice-friendly interactions like 
parameter-tuning and human-in-the-loop verifcation. Our system 
evaluation with 16 participants demonstrated that InstructPipe 
signifcantly reduced users’ workload in their creative process. 
Qualitative results further reveal that InstructPipe efectively 
supports novices’ on-boarding experience of visual programming 
systems and allows them to easily prototype concepts for various 
purposes. In our experiments, we also observed new challenges 
caused by human cognitive characteristics, and proposed future 
technical directions towards open-ended AI prototyping assistants. 

In summary, we contribute: 

(1) InstructPipe, a visual programming AI assistant that enables 
users to generate ML pipelines from human instructions by 
automating node selection and connection, 
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(2) System design and technical development of InstructPipe. 
The system consists of two LLM modules and a code 
interpreter, which generate the specifcation for the visual 
programming pipeline, compile the code, and render the 
pipeline in an interactive node-graph editor, 

(3) Technical and user evaluations that characterize the efec-
tiveness of InstructPipe, and contribute fndings that reveal 
new challenges for the HCI community. 

2 Related Work 

2.1 Visual Programming 
A computer program defnes the operation of computer systems. 
However, “the program given to a computer for solving a problem 
need not be in a written format” [73]. This future-looking statement, 
dating back to the 1960s, inspired several generations of researchers 
to design and build visual programming systems. 

Today, visual programming systems (e.g., LabView [39], Unity 
Graph Editor [76], PromptChainer [84], ComfyUI [13] and Visual 
Blocks [18]) typically feature a node graph editor, providing 
users with a visual workspace to “write” their program using 
“building blocks” [28, 68, 89]. Recent work further explored the 
application of visual programming in education [9, 35, 40], XR 
creativity support [88, 91, 93], and robotics [14, 30, 31]. For 
example, Zhang et al. [93] connected the visual programming 
tool to the concept of teaching by demonstration [44, 49, 99], 
allowing users to rapidly customize AR efects in video creation. 
FlowMatic [91] extended traditional visual programming interfaces 
into 3D virtual environments, providing users with immersive 
authoring experiences. 

Advancements in AI have introduced many repositories of 
advanced ML models [33, 66], and an increasing number of 
researchers are exploring AI chains [41, 86]. This progress has 
motivated HCI researchers to design and build a range of visual 
programming interfaces to support the AI development process [13, 
43, 84]. For example, ChainForge is a web-based platform for 
developers to explore various LLM-related confguration and 
designs in a wide range of applications [4]. Visual Blocks enables 
creation and interaction of advanced ML pipelines that can leverage 
state-of-the-art computer vision and computer graphics models in 
the browser [18]. 

This work contributes the technical system, implementation and 
evaluation of a novel AI assistant that enables the use of text-based 
instructions in visual programming of ML pipelines. Compared to 
typical workfows in which people manually build their pipelines, 
InstructPipe has the potential to accelerate ML pipeline prototyping 
in visual programming. 

2.2 Interactive Systems with LLMs 
The advances in LLMs bring many research directions for 
HCI researchers. Researchers have started designing new LLM 
interfaces, to advance beyond the currently dominant chatbot 
interface (e.g., OpenAI ChatGPT, Google Gemini). For example, 
Graphologue [36] augmented LLM responses with interactive 
diagrams that visualize response texts in a structured format. 
Sensecape [71] provides users with a workspace to explore long 
LLM responses in a hierarchical structure. 

Many HCI researchers integrated LLMs in conventional inter-
active systems and demonstrated that such enhanced machine 
intelligence can provide new user experiences [20, 46, 56, 60, 78]. 
This research principle is widely applied in many downstream 
HCI applications, including visualization [65, 80], explainable 
AI [79, 85], and social science [45, 55]. For example, Chen et al. [11] 
utilized LLMs to bridge low-level sensor information with high-level 
human requests. Experiments showed that such connection allows 
users to “construct their personalized contexts [for an intelligent 
system] more quickly, accurately, and naturally”. To interface human 
intention with machine operations, researchers typically utilized 
LLMs by following the ReAct (reasoning and acting) paradigm [87]. 
For example, Park et al. [55] simulated human behaviors in an 
artifcial social system by leveraging LLMs as intelligent agents 
that perceive the environment, plan their behaviors, and act in 
the environment. Automated Visualization (AutoViz) researchers 
employ LLMs for data analysis and reasoning for presenting the 
visualization [48, 50, 63]. For example, LIDA features four modules 
in the visualization pipeline to 1) summarize a structured dataset, 
2) explore the user’s goal, 3) generate code for visualization, and 4) 
render visualization [16]. ChartGPT further constructs a dedicated 
dataset for chart visualization, and fnetunes an LLM for fully 
automating the data visualization pipeline [74]. 

InstructPipe extends the application of ReAct-like LLM frame-
works [16, 74] to visual programming and demonstrates its 
efectiveness to support rapid prototyping with lower user 
workload. Additionally, introducing visual programming to the 
ReAct framework showcases an interface solution for human-AI 
collaboration. That being said, our work values partially correct AI 
generation, though the previous literature considers it as a complete 
generation failure [16, 24]. We leverage visual programming as a 
platform to integrate partially complete AI generations with human 
interactions, enabling even novices to intuitively collaborate with 
AI in their creative processes. 

3 InstructPipe 
InstructPipe is an AI assistant that enables users to generate a visual 
programming pipeline by simply providing text-based instructions. 
We implemented InstructPipe on Visual Blocks [18, 98], a visual 
programming system for prototyping ML pipelines. 

3.1 User Workfow 
To generate a pipeline, users frst click the “InstructPipe” button 
in the top-right corner of the interface (Figure 2b). The system 
then activates a simple dialog (Figure 2a) in which users provide 
a description and a tag for their desired pipeline. The tag 
can be “language”, “visual”, or “multimodal”, and helps guide 
the pipeline generation. After users click the “Submit” button, 
InstructPipe generates a visual pipeline in the node-graph editor. 
More specifcally, InstructPipe generates a directed acyclic graph 
(DAG) of a visual programming pipeline. This implies that it uses 
default node parameters (e.g., the “temperature” or “max_tokens” 
value of an LLM node). Therefore, after the generation, the user 
needs to 1) fnish the graphic structure if necessary, and 2) perform 
parameter tuning as well as human-in-the-loop evaluation of the 
pipeline quality interactively in the visual programming platform. 
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(a) InstructPipe’s instruction dialog. 

(b) InstructPipe’s visual programming interface. 
Figure 2: The user interface of InstructPipe. The user can frst click on the “InstructPipe” button on the top-right corner of the 
interface in (b). A dialog will appear, and the user can input the instruction and select a category tag. InstructPipe then renders 
a pipeline on (b), in which the user can interactively explore and revise. 
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Figure 3: The distribution of 20 primitive processor nodes 
supported by InstructPipe. Note that “PaLM” represents two 
nodes in InstructPipe, i.e., a text generation model and a chat 
model of PaLM [3]. 

As we will show in our evaluation, this new human-AI collaboration 
approach reduces users’ workload on the technical portion of the 
visual programming tasks (selecting and connecting nodes) and 
thus provides a more novice-friendly experience for technical visual 
programming platforms. 

3.2 Primitive Nodes 
InstructPipe supports 27 primitive nodes in Visual Blocks. We 
achieved this node library of InstructPipe by fltering out nodes 
without explicit defnition of their functions1. For example, ‘TFLite 
model runner’ is an implicitly defned node: the user needs to input 
a tensorfow hub link to defne its functionality. As we mentioned 
previously, InstructPipe focuses on generating a DAG and leaves 
the parameter-tuning task to users. Adding such implicit nodes 
without a clear defnition of the functionality can easily confuse 
our AI assistant in the generation process, and thus, we decide to 
exclude these nodes in the node library of InstructPipe. 

The 27 nodes in our library include three input nodes, four output 
nodes and 20 processor nodes. The following shows an example 
node in each category, and we leave the full node library description 
in Appendix A: 

• “live camera” (an input node): Capture video stream 
through your device camera 

• “markdown viewer” (an output node): Render Markdown 
strings into stylized HTML. 

1Note that Visual Blocks is a system that is actively being updated, and there are more 
nodes now. 
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• “imagen” (a processor node): Generate an image based on 
a text prompt. 

We distributed 20 processor nodes based on the data type of 
its I/O edges and visualized it in Figure 3. For example. “Google 
Web Search” takes “Texts” information as input and output new 
“Texts”, and “OCR” takes an image (vision-based information) 
as input and output “Texts”. “Features” in Figure 3 indicates a 
wide range of intermediate data formats used in ML pipelines, 
including segmentation masks, pose landmarks, URLs and etc. As 
shown in the matrix, InstructPipe contains a wide range of nodes 
that support the creation of complex ML pipelines. Compared to 
related work that automates ad hoc ML inferences in specifc use 
scenarios [24, 72], InstructPipe makes one more step towards the 
open-ended assistants with a more diverse set of primitive nodes. 
Further extending our node library can efectively empower the 
capability of our AI assistant, which we leave as critical future 
work. In the current implementation of InstructPipe, we focus on 
demonstrating its capability based on our focused node library and 
explore what new experiences this AI assistant can bring to our 
users. 

4 Pipeline Generation from Instructions 
InstructPipe leverages LLMs to generate visual programming 
pipelines from text instructions. There are two prevailing ap-
proaches for LLM-customization, fne-tuning [46, 62], and few-shot 
prompting [24, 55]. Fine-tuning would require a substantial volume 
of annotated data, with pairs of pipelines and prompts, and it is hard 
to achieve for a specifc visual programming platform. Additionally, 
a growing list of nodes would consistently require 1) new data 
annotation and 2) retraining the model, making this approach less 
sustainable. In comparison, few-shot prompting is a more practical 
approach for prototyping an interaction concept to understand 
the new experience it would bring to the community [24, 81, 87]. 
One major challenge of applying LLMs in visual programming 
AI assistants lies in designing efcient prompts that ft within a 
reasonable number of tokens. Even though we focus our exploration 
on 27 nodes, the node confguration fle alone includes 8200 tokens. 
Further formulating pipeline examples as in-context few-shot 
examples would result in a combinatorial explosion, causing an 
overwhelming number of tokens in the prompt. 

To this end, we implement InstructPipe with a two-stage 
LLM refnement prompting strategy, followed by a pseudocode 
interpretation step to render a pipeline. Figure 1 illustrates 
the high-level workfow of the InstructPipe implementation. 
InstructPipe leverages two LLM modules (highlighted in red); a 
Node Selector (section 4.2), and a Code Writer (section 4.3). Given a 
user instruction and a pipeline tag, we frst devise the Node Selector 
to identify a list of potential nodes that would be used according to 
the instruction. In the Node Selector, we prompt the LLM with a very 
brief description of each node, aiming to flter out unrelated nodes 
for a target pipeline. The selected nodes and the original user input 
(the prompt and the tag) are then fed into the Code Writer, which 
generates pseudocode for the desired pipeline. In Code Writer, we 
provide the LLM with detailed descriptions and examples of each 
selected node to ensure the LLM has extensive context for each 
candidate node. Finally, we employ a Code Interpreter to parse the 

(a) Pipeline. 

(b) Pseudocode. 
Figure 4: A pair example of pipeline and pseudocode. In the 
frst line of code under “processor”, pali_1_out, pali_1, pali 
and image=input_image_1, prompt=input_text_1 represents 
output variable id, node id, node type, and node arguments, 
respectively. 

pseudocode and render a visual programming pipeline for the user 
to interact with. 

4.1 Pipeline Representation 
The Visual Blocks system takes JSON-format data as input and 
renders a directed acyclic graph (DAG) in the visual programming 
workspace. Therefore, the ultimate goal of InstructPipe is to 
generate the JSON fle; however, directly generating the long 
JSON fle is computationally expensive. For example, the JSON 
fle for rendering the pipeline in Figure 4a contains approximately 
2.8k tokens. To address this issue, we utilize the pseudocode 
representation of a DAG, and defne this token-efcient data format 
as the output data format of our LLM module. Figure 4b shows 
the corresponding pseudocode representation of the pipeline in 
Figure 4a, and the it only contains 123 tokens. The pseudocode 
representation simply stores the DAG information of a visual 
programming pipeline without other information such as node 
parameters (e.g., the “max_tokens” confguration of an LLM module) 
and the layouts of the nodes. This indicates that InstructPipe leaves 
the task of node parameter tuning to the user, which we believe 
is a more novice-friendly task, and focuses on providing technical 
assistance on selecting and connecting nodes. 

In the following content, we provide detailed explanation on 
the pseudocode design and implementation. As we mentioned 
above, Figure 4 provides an example of a pipeline (Figure 4a) and 
its corresponding pseudocode (Figure 4b). The syntax design is 
inspired by TypeScript, and the overall structure is inspired by how 
academic papers present pseudocode [94] in an algorithm block. In 

5 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al. 

Figure 5: The prompt structure for the Node Selection module. 
Each node description is formated as "{node types}: {short 
descriptions of the nodes}; {recommended node(s)}". The node 
recommendation is optional. 

Figure 4b, we highlight the frst line under the processor module 
(i.e., the operation of the PaLI node) in diferent colors, representing 
four diferent components in the programming language. “pali_1” 
is the unique node ID. The green symbol after the colon, i.e., “pali”, 
specifes the node type. In this example, node ID “����_1” is a 
“pali” node. The arguments in brackets, i.e., “image=input_image_1, 
prompt=input_text_1”, specifes the input variables (or input edges 
in the graph) of this node. “pali_1_out” represents the output 
variable name. For input nodes, the output variable name is the 
same as the node id, so we do not annotate the output variable 
with a separate name (e.g., “input_image_1: input_image()” instead 
of “input_image_1 = input_image_1: input_image()”). Note that 
InstructPipe generates texts (i.e., the node parameter) in the “input 
text” node. Therefore, the argument in “text=“caption this image in 
detail”” does not indicate that the “input_text” node accepts input 
edges, but accepts the node parameter input as a special case. 

4.2 Node Selector 
Node Selector flters out unrelated nodes by providing the LLM 
with a short description of each node. Figure 5 shows the prompt 
we use in Node Selector. Followed by a general task description 
and guidelines, we list all node types with a short description 
that explains the function of each. Several nodes come with 
recommendation(s) when the users interact with Visual Blocks, 
and we also include such node recommendations in the prompt. 
The main intuition of this prompt design is based on how existing 

You are a programmer responsible for helping the user design an AI 
pipeline.
Upon receiving a concise description from the user about the 
desired functionality of the pipeline, you should generate the whole 
pipeline using pseudocode.

Guidelines:
1. Respond solely in pseudocode, without additional commentary.
2. Utilize ONLY the nodes listed below; introducing new nodes is not 
permitted.
3. Ensure there's a minimum of one line in each pseudocode 
category: 'input', 'output', and 'processor'.

Below are the nodes you can incorporate into the pipeline:
… // detailed node configurations for each selected node

The following is a full list of nodes you may also use but those not 
included above are not recommended:
… // a full list of node types supported by LLM2Pipeline

Examples:
Q: 
{'description': 'generate a photo and validate whether it is real or 
generated.', 'tag': 'multimodal'}
A: 
… // pipeline pseudocode 

… // more in-context examples

Figure 6: The prompt structure for the Code Writer module. 
Detailed node confgurations, see the appendix for examples, 
are listed in the highlighted region. 

open-source libraries (e.g., Numpy [25]) present a high-level 
overview of all functions2. The documentation typically presents 
a list of supported functions (in each category), followed by a 
short description so that developers can quickly fnd their desired 
functions. At the end of the prompt, we provide a list of Q&As as 
few-shot examples to support the LLM to learn and adapt to the 
context of the task. 

4.3 Code Writer 
With a pool of selected nodes, the Code Writer module can write 
pipeline rendering pseudocode. Figure 6 shows the structure of 
the prompt utilized in this LLM module. Similar to section 4.2, the 
prompt starts with a general introduction and several guidelines. 
The major diference in the prompt design in this stage lies in 
the granularity of each node introduction. We provide a detailed 
confguration for each selected node with additional information, 
including 1) input data types, 2) output data types, and 3) an 
example, represented in pseudocode, for how this node connects 
to other nodes. We include a detailed explanation of the full 
node confguration in Section B.1.2. Similar to the previous LLM 
module (section 4.2), the prompt design here is also inspired by 
the documentation of existing software libraries. Specifcally, we 
gain inspiration from low-level function-specifc documentation3, 
which typically includes 1) a detailed description, 2) data types in 

2See an example in the following link: https://numpy.org/doc/1.25/reference/routines. 
array-manipulation.html
3See an example in numpy.shape: https://numpy.org/doc/1.25/reference/generated/ 
numpy.shape.html#numpy-shape 
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the input/output, followed by 3) one or more examples of a few 
lines of code for how developers can use the function. 

The prompt also includes a Q&A list as few-shot examples. 
However, providing few-shot examples in this stage is non-trivial. 
The reason lies in the dynamics of the node selection pool. A 
combination of all the nodes causes many possible options, and 
it is impossible to design a dedicated list of few-shot examples in 
each possible case. Therefore, we only created an example list for 
each pipeline tag (i.e., “language”, “visual”, and “multimodal”) and 
intended to utilize these few-shot pipelines to teach LLMs example 
use cases in each category. This implies that in-context pipelines 
may include nodes that were not selected for the prompt. This can 
potentially lead to LLM hallucinations [32], i.e., utilizing the nodes 
that do not exist in our node library. We mitigated this issue by 
adding specifc prompts that explicitly show a list of supported 
nodes (i.e., the contents start with “the following is a full list of 
...” in Figure 6). However, LLM hallucination is a community-wide 
challenge, and we also fnd that our approach cannot eliminate 
this issue in visual programming. Therefore, InstructPipe conducts 
a sanity check for the Code Writer outputs and directly disposes 
of the line of pseudocode with such hallucinated nodes. This can 
ensure that the generated code is in a valid data format for rendering 
the pipeline in Visual Blocks. 

4.4 Code Interpreter 
After our LLM modules generate the pseudocode, InstructPipe 
employs a code interpreter to parse the generated pseudocode and 
compile a JSON-formatted pipeline with an automatic layout. Since 
we incorporated standard approaches to achieving such conversion 
from the pseudocode to the JSON fle, which we do not intend 
to claim as our main contributions, we briefy summarize our 
implementation into the following three steps for simplicity and 
elaborate low-level implementation details at Appendix B.2: 

(1) Lexical Analysis: InstructPipe frst tokenizes each line of 
the pseudocode into output variable id, node id, node type, 
and node arguments (section 4.1). 

(2) Graph Generation with Default Node Parameters: We 
generated a DAG based on the tokenized results and applied 
predefned default node parameters in each generated node. 
For example, by default, the temperature and the max output 
tokens for the PaLM node are set to 0.5 and 256, respectively. 
If users are not satisfed with the default values, they can 
interactively adjust the parameters in the node-graph editor. 

(3) Layout Optimation: When pseudocode is converted into a 
JSON fle, default node parameters will cause sub-optimal 
visual efects (Figure 11a). InstructPipe conducts a layout 
optimization process using the breadth-frst search (BFS) al-
gorithm, which re-arranges the layout for better presentation 
of the pipeline (Figure 11b). 

5 Technical Evaluation 
InstructPipe contributes a framework for generating specifcations 
for visual programming pipelines based on text prompts from users. 
To characterize the system’s performance, we designed a technical 
evaluation to assess the accuracy of the generated graphs for a 
variety of prompts. 

5.1 Data Collection 
To compute the accuracy of our generated pipelines, we need to 
collect a corpus with pairs of instructions and their corresponding 
ground-truth pipelines. Therefore, we organized a two-day hybrid 
workshop with 23 participants, aiming to collect real pipelines 
that Visual Blocks users would build for their creative usage. 
The 23 participants (F: 6; M: 17) are composed of fve software 
engineers, four research scientists, four students, three designers, 
two project managers, and two engineering managers. Six attendees 
claimed that they had prior experience in using Visual Blocks. As 
this was a data collection study rather than a user study, where 
each participant here served as a data creator and annotator, we 
did not restrict participation to individuals who self-identifed as 
novices. The workshop began with a 15-minute Visual Blocks 
tutorial walking the participants through the nodes and the 
pipeline-building process. After the tutorial, attendees created 
pipelines independently. Once they fnished creating the pipelines, 
participants were required to caption their pipelines and upload 
them. We utilized this corpus of data pairs (caption/pipeline) as the 
data set for the technical evaluation. 

The workshop was an open-ended creation process in which 
participants were free to use any node available in Visual Blocks 
with more than the 27 nodes covered by InstructPipe. The 
InstructPipe feature was not available in the workshop. After the 
workshop, we post-processed our collected data and achieved 
48 pipelines (23 language pipelines, seven visual pipelines and 
18 multi-modal pipelines) for our technical evaluations. The 
post-processing procedure details are presented in Appendix C.1. 

5.2 Metric: The Number of User Interactions 
To quantify the efcacy of InstructPipe based on our goal of 
accelerating and streamlining pipeline creation, we defned the 
metric Number of User Interactions as follows: 

The Number of User Interactions is defned as the minimal 
number of user interactions needed to complete the pipeline 
from a generated pipeline. 
This defnition is mainly inspired by Graph Edit Distance 

(GED) in graph theory [22]. Note that there are countless ways 
to modify a generated pipeline toward a complete pipeline in 
practice. Nevertheless, the minimal number of user interactions 
is deterministic, and this is an objective metric that can fairly 
estimate the amount of efort users need to spend to achieve their 
goal. A pipeline is considered complete when it satisfes the given 
instruction. We calculate the number of interactions across two 
types of events: 1) adding/deleting a node, and 2) adding/deleting 
an edge between nodes. In the technical evaluation, we report the 
average ratio of user interactions required to complete a pipeline 
“from our generated pipeline” compared to “from scratch” as our 
target metric. For example, if it takes 3 interactions to complete 
a pipeline from our generated results and takes 10 interactions 
to complete from scratch, then the ratio of interactions is 30%. 
Appendix C.2 contains further discussion of this metric. 

5.3 Experiment Setups and Results 
We ran our generation algorithm on the pipeline captions six times 
(three times for each caption × two captions for each pipeline), and 
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Table 1: The ratio of human interactions in the technical eval-
uation. Results are reported as mean ± standard deviation. 

Overall Language Visual Multimodal 

18.9 ± 20.3% 17.4 ± 20.6% 17.6 ± 23.7% 20.8 ± 16.0% 

computed an averaged performance among the six trials for each 
pipeline. 

Table 1 summarizes the results of the technical evaluation. 
Compared to building a pipeline from scratch, InstructPipe allows 
the user to complete a pipeline with 18.9% of the user interactions, 
demonstrating the potential of InstructPipe to require more than 
5X fewer interactions. Seven generated pipelines directly satisfed 
with instructions without user interactions in all six trials, and 38 
generated pipelines completed at least once in any of the six trials. 

6 User Evaluation 
While the technical evaluation demonstrates the accuracy of 
InstructPipe among various real pipelines created by participants, 
it is still unclear what is the actual user experience when real users 
go through the entire system workfow. Therefore, we conducted 
an in-person user study of InstructPipe with another group of 
participants, aiming to provide more insights into our system 
performance as well as explore new user experiences brought by 
InstructPipe. The study recruitment was in accordance with the 
ethics board of Google. We obtained participant consent before the 
study began. 

6.1 Study Design 
In the user evaluation, we aimed to investigate how the interface 
condition (with InstructPipe and without InstructPipe; the inde-
pendent variable) afects the user experience and behaviors (the 
dependent variable). We will refer to these two interface conditions 
as “InstructPipe” and “Visual Blocks” in the following content. 
Figure 7 visualizes the complete study fow. In each condition, 
participants completed the two pipelines with counterbalance 
(referred to as Task 1 and Task 2 in Figure 7). 

We carefully designed the experiment to create a fair study that 
could be completed with reasonable efort. In the following content, 
we elaborate on how we made two important decisions related to 
the study’s rigor: 

6.1.1 Two controlled pipelines with full counterbalancing. 
Our user evaluation focuses on two controlled pipelines with full 
counterbalancing. While we acknowledge that more pipelines 
(e.g., four, six, or more) could enhance generalizability, such 
designs would also inevitably increase the size of the required 
user groups, even without fully counterbalancing. For example, 
fully counterbalancing four controlled pipelines requires 12× 
more participants. Partially counterbalancing with four pipelines 
using the Latin Square design still requires us to double the 
number of participants. Additionally, novice participants are likely 
to progressively gain experiences within the study, and such 
learning efects will weaken the design of partial counterbalancing. 
We believe that two pipelines with full counterbalancing are a 
reasonable experiment setup in this work, and future work could 
consider extending and scaling up these experiments. 

Figure 7: A fow diagram of the user study. After a training 
session, participants completed the two tasks in each con-
dition in the sequence determined by the counterbalancing 
protocol. 

6.1.2 Pipeline selection. Given the fxed number of pipelines we 
can evaluate with users and the potential bias introduced by few-
shot prompts [96], it is important how we select the two pipelines 
for user study. There are two critical factors that we considered: 
representativeness and diversity. Representativeness implies that 
the selected pipelines should represent the average performance of 
InstructPipe. Diversity suggests that the selected pipelines should 
provide various experiences to simulate the actual use scenarios 
in which the performance of InstructPipe may vary. Following 
this guideline, we selected four candidates, and the fnal decision 
was made after a pilot study with one participant to test the level 
of pipeline difculty. The two resulting pipelines are composed 
of eight nodes with seven edges, and six nodes with six edges, 
respectively. Using the instructions from two authors, the averaged 
ratio of human interactions in these two pipelines are 27.8% and 
5.2%, respectively. See Section D.2 for more detail on the pipelines. 

6.2 Procedure 
Each study session takes 55 - 65 minutes in total. The study started 
with 10-15 minutes of hands-on training for both conditions. The 
training included 1) all the Visual Blocks interactions needed to 
complete the subsequent steps of the experiment, and 2) all the 
nodes that participants will need to use for pipeline creation in 
the main session. Participants were also encouraged to experiment 
with building a pipeline independently, and to ask questions. 

After the training, participants progressed to a formal study 
session where they were asked to build and complete pipelines 
under the given conditions. We verbally described the pipelines to 
participants as below, and participants could not see our scripts: 

• Text-based pipeline: get the latest news about New York 
using Google Search and compile a high-level summary of 
one of the results. 

• Real-time multimodal pipeline: create a virtual sun-
glasses try-on experience using your web camera. 
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A pipeline is considered complete when the aforementioned 
functions run in the user’s visual programming workspace. For 
example, we consider the “real-time multi-model pipeline” as 
complete when the pipeline registers the sunglasses on the user’s 
face, with real-time tracking and following of the head movement. 

During the task, participants were allowed to consult with us 
for technical help. If participants were unable to make progress, 
we provided hints. We provided many more hints in the baseline 
condition, and we made this decision to ensure every novice-level 
participant can fnish their tasks within a reasonable amount of 
time. Appendix D.3 contains more details and discussions of the 
assistance we provided in the study. As an optional extension to 
the study, eight participants were ofered an open-ended pipeline 
creation, where participants prototyped their own ideas using 
InstructPipe. This optional section was ofered based on the 
progress of the participant in the previous sections, and time 
constraints so that the study duration was controlled within the 
time we guaranteed in our recruitment process. 

After conducting all pipeline-condition combinations, par-
ticipants answered open-ended questions in a semi-structured 
interview. The interview script is available in the appendix D.1. 
Participants provided their general impression of each condition, 
listed pros and cons, identifed potential future use cases, and 
critiqued the user interface for future improvements. We transcribed 
the interviews and conducted the open coding analysis on the 
qualitative data [69, 70]. More specifcally, we categorized the 
quotes based on our observations and then refned the code for 
presentation. 

6.3 Participants 
We recruited 16 participants from our internal participant pool, 
which is specifcally designed for UX research within our institution. 
Importantly, none of the participants was involved in our project, 
and the authors in charge of the study did not personally know any 
of the participants. We screened participants on their self-reported 
programming experience and machine learning skills. All of the 
16 selected participants rated their “Programming Experience” and 
“’Machine Learning Skill’ as “Intermediate” or below (See Table 3 
for a full breakdown). We intentionally recruited novice users, as 
we envision them as intended users of InstructPipe. 

6.4 Metrics 
In addition to the qualitative data from the interview, we measured 
the following quantitative data. 

6.4.1 Task Completion Time. Back-end logs were used to collect 
timestamps for starting and ending events. Then, the completion 
time for each condition was calculated per task for each participant. 

6.4.2 The Number of User Interactions. We used the number of 
user interactions (introduced in section 5.2) to measure the user’s 
objective workload. Unlike the results in section 5.3, we report an 
absolute value here because all the pipelines are controlled in the 
system evaluation. 

6.4.3 Perceived Workload. The raw task load index (Raw-TLX) 
questionnaire was used to measure participant’s perceived work-
load [26]. This questionnaire was a subset of the NASA-TLX (part 

Table 2: Task completion time and the number of human 
interactions in the user study (N=16). We use ∗ ∗ ∗ to denote 
� < .001. 

System 
Time (secs) 

Median IQR p 
# Interactions 

Median IQR p 

InstructPipe 203.5 156.25 *** 5.0 4.25 *** Visual Blocks 304.5 124.25 16.0 6.0 

I). Participants flled out the questionnaire after each condition 
(InstructPipe or Visual Blocks). 

6.5 Results 
6.5.1 InstructPipe Reduces Users’ Workload. Table 2 shows 
the results of two objective metrics measured in the study. The 
Wilcoxon signed ranks test found signifcant diferences on both 
scales (� < .001). 

Figure 8 further visualizes the results of users’ perceived 
workload in six sub-scales. The Wilcoxon signed ranks test 
revealed signifcant diferences on fve sub-scales, all except “Mental 
Demand” (see section 7.2 for more explanations and discussion). 
Furthermore, the test indicates that all participants unanimously 
considered that InstructPipe provides lower or equal workload 
on the subscales of “Physical Demand”, “Temporal Demand”, 
“Performance” and “Efort” (� = 0). These quantitative results, with 
both objective and subjective metrics, demonstrate the potential 
for InstructPipe to dramatically reduce users’ workload during the 
pipeline creation process. 

Users’ qualitative feedback is also aligned with our quantitative 
results. Participants complimented that InstructPipe is “helpful” 
[P16] and “obviously easier (to use) than [Visual Blocks]” [P1]. P11 
and P6 further elaborated how InstructPipe enhances the user 
experience when the user builds a visual programming pipeline: 
“I feel like I can talk in natural language, and it (InstructPipe) 
can write the code for me.” [P11] 

6.5.2 On-boarding Support of Visual Programming. P1, P5, 
and P9 explicitly mentioned that there is a “learning curve” in 
visual programming systems, which validates our statements and 
motivation in section 1. 
“There is a learning curve to it (using the visual programming 
system) for sure, because you have to, like, read each node 
carefully.” [P1] 
P1’s comment matches our observation of participants’ behaviors 

during the study. In the Visual Blocks condition, we observed 
that people were more easily stuck in their creative purposes, 
which required our support. Typical support included 1) guiding 
participants if they went too far away from the correct pipeline, and 
2) reminding them of an important node for the pipeline, although 
we introduced all the necessary nodes in our training session. 

To this end, participants commented that InstructPipe is a good 
onboarding tool in visual programming systems, especially for 
non-experts, to get familiarized with the system by having a ready 
solution. 
“[InstructPipe] lets you know these nodes exist [when the pipeline 
appears after the instruction]. It’s like a super speedy tutorial.” 
[P7] 
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Figure 8: Raw-TLX results. The statistic signifcance is annotated with ∗ , ∗∗ , or ∗∗∗ (representing �<.05, �<.01, and �<.001, 
respectively). 

“If you don’t have experience in visual programming, you will 
appreciate [InstructPipe] much more ... With [InstructPipe], the 
structure is there, and I feel less worried about making mistakes. 
It’s, like, giving you examples. It’s easier than starting from 
scratch.” [P5] 
Anecdotally, three participants asked for InstructPipe during the 

Visual Blocks condition. 

6.5.3 Integration into the Existing Workflow. InstructPipe is 
a feature available in Visual Blocks. In the interviews, participants 
particularly expressed their strong appreciation of this design as 
an AI assistant that enhances, instead of completely replacing, the 
existing user workfow: 
“[The pipeline generated by [InstructPipe] could be pretty close 
to what I want ... Or maybe sometimes not, but that’s okay. I 
got most of the blocks there, and then it’s up to me to fgure out 
how to connect them.” [P6] 
While most participants, like P6, appreciated the integration 

of the AI assistant into the standard visual programming work-
fow, P15 expressed a concern about this approach. In visual 
programming, users typically rely on visual thinking to construct 
pipelines, but the new prompt-based method introduces a shift 
toward text-based reasoning. This blend of cognitive processes 
could potentially increase users’ mental workload: 
“ [the participant is talking about s/he wants to fx an 
unsuccessful generation by changing the prompt instead of 
performing visual programming here] ... because I just spent 
so much time fguring out what the prompt should be. That’s 
kind of like already where my brain was and I knew that 
something was wrong there (the prompt), but I would have 
to switch over to the other mode (visual programming) of 
fguring out what was wrong in the pipeline ... [this is very 
overwhelming]” [P15] 

6.5.4 Use Scenarios: Accessible ML Prototyping and Edu-
cation. In the open-ended session, we observed that participants 
could efciently utilize InstructPipe to prototype a pipeline for 
various daily life or business purposes. For example, P14 tried 
InstructPipe with “summarize real estate price increase in San Diego 
California over 2023”. Compared to using LLM chatbots, InstructPipe 
helps the user quickly build a more explainable pipeline in which the 

user can track (or modify) the information resources. P4 prototyped 
an interactive VQA app by “Describe the product in the camera”. 
P13 further shared his thoughts on how this rapid and accessible 
prototyping experience can support future business: 

“It (InstructPipe) is going to facilitate prototype building for PMs 
(Product Managers) ... I have lots of ideas, but my challenge 
is how to translate an idea into the technical world and see a 
prototype. I think that this app expedites me in that process a 
lot.” [P13] 

Another emerging theme was regarding educating kids on 
programming: 

“With [InstructPipe], I don’t need to teach them (kids) to code 
for them to build something ... Some kids like to code, some kids 
like to create stuf but don’t want to be bored with learning the 
syntax of coding ... Using [InstructPipe], I can see kids can build, 
like, customized chat-bots or interactive Wikipedia.” [P13] 

6.5.5 Limitations and Future Directions. Across the study 
sessions, we consistently observed a specifc user behavior pattern: 
participants typically paused their pace when a generated pipeline 
appeared in the workspace. At these times, some participants used 
soliloquy, as in saying “Let me see”, while others kept a focused stare 
on the workspace. These human behaviors suggest that InstructPipe 
led participants to engage in deeper, contemplative thought. 

The observation suggests that participants needed time to 
perceive the generated pipelines as they appeared in the workspace. 
Such sense-making processes bring new challenges to the creative 
process: 

“[Using InstructPipe] is a little mentally demanding ... I have to 
debug ... If it doesn’t help (generating an almost 100% correct 
pipeline), I have to go through all the nodes ... I don’t like 
debugging.” [P13] 

Additionally, we observed that several participants spent more 
time crafting their prompts than others. P15 spent the most time 
writing the prompt. The following comments provide insights into 
how the prompting process caused extra mental workload: 

“I’m a relatively visual thinker ... Getting the prompt right 
requires me to think in a way that is a lot more like precise 
and like getting it fgured out without working it out live ... 
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[When writing prompts, ] you’re just putting them (every detail 
in a whole pipeline) all out [in one short prompt]” [P15] 
In addition to the lack of the original visual thinking experience 

in visual programming, P13 also warned that such simplifcation of 
the creative process into prompting experience may sacrifce users’ 
hands-on experiences: 
“I’m very hands-on with techs. I would like to understand what’s 
going on [rather than prompting LLMs to generate everything 
for me]. I want to like think for myself and then compile all the 
information myself.” [P13] 

7 Discussion 

7.1 Human-AI Collaboration in Prototyping 
Open-ended ML Pipelines 

Our technical evaluation (section 5.3) shows that InstructPipe 
reduces the number of user interactions to 18.9 % (±20.3%) There 
are two key implications from the results: 

• InstructPipe automates most pipeline components with a 
single prompt. 

• InstructPipe is not able to automate all the pipeline creation 
processes. 

Such takeaways difer from early-stage fndings that show LLMs can 
achieve full automation of ML inference [24, 72]. The main reason 
is that existing work built their ad hoc solutions for target use 
scenarios, respectively. In contrast, InstructPipe covers a larger 
range of ML models (section 3.2) and aims for an open-ended 
use case. Our results show that LLMs (we used GPT-3.5-turbo in 
the study) still fail to write robust code with prompt engineering 
techniques. This aligns with the latest research fndings that show 
that even the latest LLMs still fail to formulate a whole working 
pipeline [62, 82]. 

While LLMs cannot generate a fully executable pipeline, our 
work shows that AI can successfully render a certain portion 
of a pipeline for users. Both technical and user evaluations 
highlight the important values here. We believe such values provide 
useful takeaways for HCI researchers to explore more human-AI 
collaboration approaches and designs in visual programming. 

7.2 Three Attributes to Mental Workload 
Results in section 6.5.1 show that InstructPipe failed to signifcantly 
reduce novice users’ mental demand. We summarized its major 
causes into three aspects. 

7.2.1 Instruction. P15’s comment in section 6.5.5 summarizes the 
frst aspect that causes mental burden. Although the “instruction-to-
pipeline” process is fast and seems efortless, the process of framing 
a prompt is one factor that may overwhelm users, especially those 
who are more accustomed to visual thinking. InstructPipe requires 
its users to 1) be clear about the problem they want to solve, and 2) 
be able to clearly articulate the desired pipeline. Such requirements 
cause a mental burden to the user [6]. We believe that our results 
can reinforce the existing knowledge on how non-experts may not 
prompt LLMs well [51, 90] in the visual programming domain. 

7.2.2 Perception. The integration of LLM support into the 
visual programming interface enables a “multimodal programming” 

experience [17], in which, users can program through both 
verbal and visual approaches. However, this fexibility increases 
perceptual burden as users switch between visual and text-based 
thinking [53]. Interestingly, our results seemingly contradict 
psychological fndings based on the Dual Coding Theory (DCT) that 
show a combination of verbal and visual information actually helps 
humans’ memory process4 [52, 54]. Therefore, we believe that the 
mental workload stems not from dislike of multimodal workspaces, 
but from the lack of a transparent interface that aligns users’ mental 
models with AI reasoning both verbally and visually. That being 
said, a next-generation copilot should visualize a pipeline (i.e., visual 
info) while the user is prompting the system (i.e., verbal info), 
constituting and interfacing multimodal processing in humans’ 
brains. 

7.2.3 Debugging. When a rendered pipeline does not match 
users’ expectations, users need to debug (see P13’s comment 
section 6.5.5). Specifcally, users need to “invest extra efort to review 
and understand the generated content” [95] and then solve the issues 
caused by the AI assistant. In essence, debugging is a professional 
programming skill, which understandably can be mentally over-
whelming for beginner-level users. While InstructPipe visualizes 
generated code in the visual programming platform, our results 
suggest that future systems should provide more guidance for 
beginners to better proceed with their programming tasks. 

7.3 Instructing LLMs Poses Challenges for Both 
Novices and, Potentially, Experts 

As we discussed above, non-experts found it challenging to instruct 
LLM. More interestingly, we found that even we, the inventors 
of InstructPipe, failed to write optimal instructions. For instance, 
the two captions of Figure 13c are “Describe the image and turn 
it into a cat image” and “Edit an image by updating the image 
caption”. Neither caption explicitly describes the detailed pipeline 
fow clearly, and therefore, all the six evaluation trials (section 5) 
were incomplete (see Figure 9a for one example). The average ratio 
of user interactions is 45.8%, more than twice the average value 
for our multimodal pipelines (20.8%). To further understand the 
cause of the failure, another author improved the instruction into 
“Caption a tiger image using VQA, modify the character in the caption 
into a cat using LLM, and fnally generate a cat image based on the 
updated caption”. The resulting pipeline is signifcantly improved 
but still not perfect (Figure 9b). The user only needs to turn “Imagen” 
into another mode so that it also accepts the input “image” node. 
Revisiting the improved instruction, we instructed InstructPipe 
with “generate a cat image based on THE updated caption”, which 
actually missed the input image. 

The important takeaway is while natural languages are proven 
to be one promising communication media that connects humans 
and AI systems [11, 78], instructions may not be the best format to 
facilitate such connection. We believe the reason is that instructions 
are still not intuitive to humans: AI typically requires fawless and 
unambiguous instructions, while humans tend to express their 
intentions using ambiguous natural languages in conversations. 
We encourage future work to investigate alternative interaction 

4For example, people feel it easier to remember a new word if they learn the word 
using a vocabulary card with a fgure that explains the texts. 
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(a) (b) 
Figure 9: A comparison of InstructPipe generated by two instructions: (a) “Edit an image by updating the image caption” ; (b) 
“Caption a tiger image using VQA, modify the character in the caption into a cat using LLM, and fnally generate a cat image 
based on the updated caption”. See Figure 13c for the complete pipeline. 

mediums beyond instructions to further enhance user experience 
in human-AI collaboration. 

8 Limitations and Future Work 

8.1 Assisting Humans to Prompt AI Copilot in 
Visual Programming 

InstructPipe introduces a novel user interaction technique for visual 
programming, along with its set of challenges – prompting AI is not 
easy [90]. While the latest research has explored prompt writing 
assistants [7, 42, 47], creating such assistants in visual programming 
poses unique challenges, as discussed in section 7.2, and requires 
further dedicated investigation. Despite these challenges, the visual 
programming workspace ofers a unique opportunity – it provides 
an interactive and visual medium for delivering AI-generated 
information. For example, a prompt writing assistant could provide 
“a pipeline preview” in real time via a lightweight LLM. Visualizing 
estimated outcomes, such as unexpected pipeline results (as 
illustrated in Figure 9a), highlights the potential of these tools 
to guide users in refning their instructions efectively. 

8.2 Node Parameter Tuning 
InstructPipe focuses on generating the graph structure in the 
pipeline (section 4.1), and InstructPipe is not able to generate node 
parameters. The latest research in AI agents shows great potential 
for distributing a systematic task among multiple LLMs and letting 
them solve the problem collaboratively [37]. We encourage future 
work to extend such distributed AI agent approaches to generate 
suitable node parameters to further reduce users’ workload in 
tuning them. 

8.3 A Larger and Dynamic Node Library 
InstructPipe is an AI assistant prototype on a small-scale library 
with 27 nodes. Similar to other tool-calling LLM systems [15, 64], 
InstructPipe cannot generate any out-of-scope node, and thus, there 
is a limited scope of pipelines that InstructPipe can generate. Future 
work should investigate a scale-up problem by creating an assistant 
that supports large-scale nodes [61]. What new technical challenge 
will emerge? Will such a large-scale library provide practical human 
value? If yes, what are the concrete new user experience it opens 
up in visual programming? 

Additionally, future work should explore a dynamic solution 
of the node library, in which an AI assistant can defne necessary 

nodes in visual programming on the fy. HuggingGPT [66] is a 
pioneering project that shares a similar vision as this goal, but 
existing investigations show that the accuracy of such open-ended 
generation is still unsatisfactory [58, 62]. How can we design an 
interface to bridge such imperfect AI and human users in visual 
programming copilot? What will be the interaction paradigm in an 
interactive system with a dynamic node library? 

8.4 Refning System Component Design 
InstructPipe provides a system contribution, and we verifed 
the usefulness of InstructPipe via two evaluations that assess 
InstructPipe as a whole system. One important future direction 
would be to verify (or even challenge) each technical component of 
our system, as elaborated below: 

Pseudocode. We designed the pseudocode order based on how 
algorithm papers present their algorithm blocks. Is this design the 
best approach among all the possible candidates? If not, how can 
we further improve the design of pseudocode language? 

Prompt Design. We leveraged the in-context learning capability 
of LLMs in our prompt design. Prior work shows that few-shot 
examples cause bias efects in practice [97], and thus, we encourage 
future work to mitigate this bias by collecting a large dataset and 
fnetuning LLM on the dataset. 

Divide-and-conquer at Scale. We adopt the strategy of 
divide-and-conquer [67] with a two-stage LLM pipeline. Despite 
its efectiveness with a small node library and simple graphs, its 
efectiveness is unknown when generating complex graphs. Ex-
ploring agent-based approaches [29, 34] with Retrieval Augmented 
Generation (RAG) would be a promising future direction to manage 
complex graph generation in a divide-and-conquer manner [67]. 
We encourage future work to contribute high-quality datasets as 
well as an interactive LLM system with RAG that provides users 
with better experiences from AI agents. 

8.5 Evaluation Metrics and Long-term 
Evaluation 

In the technical evaluation, we assessed the performance of AI 
assistants based on the number of user interactions. Existing related 
metrics, predominantly from the code synthesis literature [2, 27], 
largely focuses on two categories: correctness-based metrics [5, 10] 
that rely on test case verifcation, and similarity-based metrics [75]. 
Very little research falls outside these two categories [59]. Our metric 
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incorporates human factors by objectively estimating user efort 
through graph theory, addressing a gap in the visual programming 
literature where human-centric considerations are crucial. While 
our work advances metric development in this domain, further 
formal research is essential to establish comprehensive standards 
for visual programming evaluation. 

In the user evaluation, we conducted a lab study to understand 
the user experience of InstructPipe. As future work, we plan to 
conduct longer-term studies and gather more realistic insights than 
those we obtained from the lab study. This is critical for us to 
understand the long-term usefulness of our assistant for beginners, 
as well as collect feedback to inform our system design. 

8.6 Responsible AI 
InstructPipe currently cannot detect harmful data or misuse of AI. 
We believe such safety features are crucial, especially in the context 
of the potential for future dynamic node libraries, which would 
greatly enhance the generalizability of ML pipeline prototyping 
capability. Future work must study efective methods to eliminate 
potential harmful uses when AI assistants become increasingly 
open-ended. 

9 Conclusion 
This paper introduces InstructPipe, an AI assistant that empowers 
users to accelerate their design of ML visual programming pipelines 
using text instructions. We design and implement InstructPipe by 
decomposing the task into three modules: a node selection module, a 
code writer, and a code compiler. Results in our technical and system 
evaluations suggest that InstructPipe provides users’ satisfactory 
“on-boarding” experience of visual programming systems and 
allows them to rapidly prototype an idea, potentially with more 
than 5X fewer interactions. We further discuss the issues we 
observed concerning LLMs in visual programming, related to 
both human factors and technical implementations. We hope 
that InstructPipe will inspire the community to continue work 
in accelerated human-AI collaboration for increased expressivity 
and creativity, for machine learning pipelines, and beyond. 
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Appendix 

A A Full List of 27 Nodes in InstructPipe 
The following content shows 27 nodes InstructPipe covers in the 
generation process and their corresponding short description used 
in the Node Selector (section 4.2): 

A.1 Input Nodes 
(1) live_camera: Capture video stream through your device 

camera. 
(2) input_image: Select images to use as input to your pipeline. 

You can also upload your own images. 
(3) input_text: Add text to use as input to your pipeline. 

A.2 Output Nodes 
(1) image_viewer: View images. 
(2) threed_photo: Create a 3D photo efect from depthmap 

tensors. 
(3) markdown_viewer: Render Markdown strings into stylized 

HTML. 
(4) html_viewer: Show HTML content with styles 

A.3 Processor Nodes 
(1) google_search: Use Google to search the web that returns a 

list of URLs based on a given keyword; usually selected with 
string_picker. 

(2) body_segmentation: Segment out people in images; usually 
selected with mask_visualizer. 

(3) tensor_to_depthmap: Display tensor data as a depth map. 
(4) portrait_depth: Generate a 3D depth map for an image; 

usually selected with tensor_to_depthmap, threed_photo. 
(5) face_landmark: Detect faces in images. Each face contains 

468 keypoints; usually selected with landmark_visualizer, 
virtual_sticker. 

(6) pose_landmark: Generate body positional mappings for 
people detected in images; usually selected with land-
mark_visualizer. 

(7) image_processor: Process an image (crop, resize, shear, 
rotate, change brightness or contrast, add blur or noise). 

(8) text_processor: Reformat and combine multiple text inputs. 
(9) mask_visualizer: Visualize masks. 
(10) string_picker: Select one string from a list of strings; usually 

used with google_search. 
(11) image_mixer: Combine images and text into one output 

image. Requires two image inputs. 
(12) virtual_sticker: Use face landmarks data to overlay virtual 

stickers on images. 
(13) palm_textgen: Generate Text using a large language model. 
(14) keywords_to_image: Search for images by keywords. 
(15) url_to_html: Crawl the website by a given URL. 
(16) image_to_text: Extract text from an image using OCR 

service. 
(17) pali: Answer questions about an image using a vision-

language model. 

{
    "nodeSpecId": "body_segmentation",
    "description": "Segment out people in images.",
    "category": "processor",
    "inputSpecs": {
        "image": {
            "type": "image"
        }
    },
    "outputSpecs": {
        "segmentationResult": {
            "type": "masks",
            "recommendedNodes": [
                "mask_visualizer"
            ]
        }
    },
    "examples": [
        "live_camera_xhjtec: 
live_camera();\nbody_segmentation_xctd1p_out = 
body_segmentation_xctd1p: 
body_segmentation(image=live_camera_xhjtec);\nmask_visualizer_frjz
ga_out = mask_visualizer_frjzga: 
mask_visualizer(image=live_camera_xhjtec, 
segmentationResult=body_segmentation_xctd1p_out);\n"
    ]
}

(a) Body segmentation 

{
  "nodeSpecId": "pali",
  "description": "Answer questions about an image using a 
vision-language model.",
  "category": "processor",
  "inputSpecs": {
    "image": {
      "type": "image"
    },
    "prompt": {
      "type": "string"
    }
  },
  "outputSpecs": {
    "answer": {
      "type": "string"
    }
  },
  "examples": [
    "input_image_f1ohfa: input_image();\ninput_text_04ejnm: 
input_text(text=\"What is the person in the image 
doing?\");\npali_2pzuwn_out = pali_2pzuwn: 
pali(image=input_image_f1ohfa, 
prompt=input_text_04ejnm);\nmarkdown_viewer_6wqe86: 
markdown_viewer(markdownString=pali_2pzuwn_out);\n"
  ]
}

(b) PaLI 
Figure 10: Examples of node confguration used in Code 
Writer. The confguration is structured in a JSON format. 

(19) imagen: Generate an image based on a text prompt. 
(20) input_sheet: Read string data from Google Sheets. 
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(18) palm_model: Generate text using a large language model 
based on prompt and context. 
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B System Implementation Algorithm 1: Code Interpreter 
B.1 System Prompts Used in LLM Modules 
Here we provide more details about the prompts we utilized 
in InstructPipe. The original txt fles are also attached in the 
supplementary zip fle. 

B.1.1 Node Selector. Please see our supplementary fle 
(node_select.txt) for the full prompt we use in this stage. 

B.1.2 Code Writer. The prompt in Code Writer is dynamic, which 
is dependent on the nodes chosen in Node Selector. Therefore, 
we cannot provide all the possible prompts in the supplementary 
materials. Here, we will focus on providing examples of two detailed 
node confgurations utilized in InstructPipe. Figure 6 shows the 
structure of the prompt utilized in this LLM stage. Figure 10 provides 
two examples of node confgurations (i.e., “Body segmentation” and 
“PaLI”) that InstructPipe may chose into the highlighted line(s). 
Each confguration includes keys of “nodeSpecId” (i.e., node types), 
“description”, “category” and “examples”. For those nodes that 
support input and output edges, “inputSpecs” and “outputSpecs” 
specify the sockets and their corresponding valid data types. 
For example, the output socket name of “Body segmentation” is 
“segmentationResult”, and its data type is “masks”. Some nodes (e.g., 
“Body segmentation”) include recommended node(s) (e.g., “Mask 
visualizer” for “Body segmentation”), and our confguration also 
contains such information in the dictionary. 

B.2 Code Interpreter 
Here, we provide more low-level implementation details on Code 
Interpreter. The Code Interpreter parses generated pseudocode 
into a visual programming pipeline for visualization at the Visual 
Blocks workspace. Figure 12 shows the data type defnition of 
graphs, nodes, and edges in the system. The example JSON fle to 
be parsed into the Typescript interface is available at the Visual 
Blocks website5. Our code defnes a visual programming pipeline 
into an array of serialized nodes, � (� ). When the user adds a 
new node to a pipeline, it adds a new “SerializedNode”, containing 
the edge defnition between this new node and other nodes in the 
current workspace, to the current “SerialedGraph”. This mechanism 
ensures that nodes can be incrementally added in the order they 
appear in the pseudocode order while maintaining the integrity of 
the graph by clearly defning dependencies and data fow between 
nodes. Algorithm 1 further shows how InstructPipe parses code 
and incrementally adds nodes to formulate a fnal serialized graph. 

C Technical Evaluation 

C.1 Data Post-Processing 
After the workshops, one author carefully examined each collected 
pipeline and found several critical issues in the raw data: 

• Incomplete pipelines. There exist pipelines uploaded by 
the participants that were incomplete. 

• Isolated graphs. There exist pipelines that include at least 
one isolated subgraph. The isolated subgraph, as opposed to 

5https://visualblocks.withgoogle.com/. The JSON fle is available for data structure 
exploration by 1) entering an example project and 2) clicking on the “Export” button 
on the top-right corner. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Input: � : the generated texts (i.e., pseudocode) in the string 
format. 

Output: � (� ): a visual programming pipeline 
(��������������ℎ) that mainly stores an array of 
��������������� (Figure 12). 
Variables: � : a dictionary of parsed tokens that contains 
������_��������_�� , ����_�� , ����_���� , 
����_���������; � : the incoming edges of a new node, in 
the format of ����������������������; �: a new node in 
the format of �������������� . 

� : �������������� [] = [] // Initialize � as an 
empty array 

����� = ����_������ (�) // Parse � into lines of code 
with no pseudocode order changed. 

for ���� in ����� do 
/* Example: */ 
/* ����_1_��� = ����_1 : ���� (����� = 

�����_�����_1, ������ = �����_����_1) */ 
/* –> */ 
/* ‘����_1_���’, ‘����_1’, ‘����’ and 

[‘����� = �����_�����_1’, ‘������ = �����_����_1’]
*/ 

� = ��������� (����) 

� : ������������� = ������_��������_����� (� )
// create incoming edges for the new node 

� : �������������� = ������_���� (�, �) // create a 
new SerializedNode with the incomingEdges 
and the parsed dictionary 

�.���_�������������� (�) // add the new 
SerializedNode to the graph 

� = �����_������ (�) // Perform the UI layout 
optimization, as shown in Figure 11 

return � 

the main graph, is defned as a graph (or a node) that has no 
connection to the main graph in the pipeline that provides 
the main functionality of the pipeline (e.g., the “Image viewer” 
node on the bottom-left corner of Figure 11b). We observed 
that some participants typically would like to explore the 
system by working on a separate sub-space. While we 
acknowledge its usefulness, leaving such “redundant” graphs 
in the raw data for the evaluation would cause issues when 
we calculate the number of user interactions (i.e., the metric 
used in the evaluation that will be defned in the next 
subsection). 

• Low-quality captions. While we explicitly required the 
participants to write descriptive captions, we found some 
captions written by the participants were either empty 
or low-quality (e.g., “newsletter”, “image editing” and 
“[participant name]-demo” ). 
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(a) Before layout optimization. (b) After layout optimization. 
Figure 11: A comparison of the same generated pipeline before and after layout optimization. 

/** A serialized graph. */ 
export declare interface SerializedGraph { 

nodes: SerializedNode[]; 

/** other properties */ 
} 

/** A serialized node. */ 
export declare interface SerializedNode { 

/** The id of the node, e.g., pali_1. */ 
id: string; 

/** The node spec id, e.g., pali. */ 
nodeSpecId: string; 

/** 
* Serialized incoming edges that 
* connect to this node. 
*/ 
incomingEdges?: { 

[inputId: string]: SerializedIncomingEdge[] 
}; 

/** other properties */ 
} 

/** A serialized incoming edge. */ 
export declare interface SerializedIncomingEdge { 

/** The id of the source node. */ 
sourceNodeId: string; 

/** The id of the output in the source node. */ 
outputId: string; 

} 
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Figure 12: The defnition of a graph, a node and an edge 
in the system using the Typescript language. Only the core 
properties of graphic structure defnition are presented in 
this fgure. 

The observation motivated us to post-process the raw data 
to present more rigorous evaluation results. We frst removed 
incomplete pipelines and the isolated graphs in each pipeline (if 
there are any). 

To further enhance the annotation quality, two authors 
individually annotated the caption of each pipeline separately 
by referring to the original captions and pipelines authored by 
the participants. It is important to note that we fnished the 
workshop and the data annotation task before we completed the 
system implementation. The two authors had no experience using 
InstructPipe before completing the annotation. We believed this 
process could efectively enhance the quality of the captions while 
maintaining the fairness of the technical evaluation. 

As we clarifed in section 5.1, the workshop is designed to be 
an open-ended creation process. This indicates that the dataset 
inevitably includes out-of-scope nodes like “custom scripts” (in 
which the participants write code to process the input data and 
return custom outputs; see Figure 13b for an example) and “TFLite 
model runner” (which call a custom TensorFlow model with a URL 
input of the model in the TF-Hub). 

We removed the pipelines that contain node(s) out of our focus 
27 nodes, and selected all the remaining pipelines as our fnal 
evaluation set. We argue that this post-processing is critical for 
reporting a fair accuracy value since InstructPipe can only generate 
pipelines based on its known node library. The fnal 48 pipelines 
(out of 64 pipelines) are comprised of 23 language pipelines, seven 
visual pipelines, and 18 multi-modal pipelines. Figure 13 shows 
three pipelines created by the participants. Figure 13b is an example 
of the pipelines that include out-of-scope nodes, and therefore are 
not included in the fnal 48 pipelines. In the technical evaluation, 
we ran our generation algorithm on the pipeline captions six times 
(three times for each caption × two captions from two authors for 
each pipeline) and evaluated the generation results using the metric 
that will be introduced below. 

C.2 Evaluation Metric: The Number of User 
Interactions 

Our defnition of the number of user interactions has two important 
implications. First, a complete pipeline after user interaction does 
not need to be the same as the corresponding pipeline in the dataset. 
As long as it fulflls the task described in the caption, we consider 
the pipeline complete. Second, our defnition does not consider 
interactions of modifying the node parameters, e.g., typing in a text 
box or selecting a value in a drop-down box. We argue that such 
interactions are highly node-dependent and are hard to quantify 
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(a) Search news from Google, summarize it, and then conduct a fact check. Input: a keyword for Google Search; Output: a summarization of the 
news and a fact-check result. 

(b) Generating an emoji from a photo. Input: a photo uploaded by the user; Output: an emoji generated from the photo. 

(c) Turning a tiger into a cat. Input: an image of a tiger; Output: an image of a cat. 
Figure 13: Example pipelines participants built in the workshops. 
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objectively. More importantly, as we explain in section 4.1, the 
generation of node parameters is out of the scope of this work. 

In the technical evaluation with various pipelines, it is unfair 
to report an averaged absolute value of user interactions because 
the complexity of the pipelines varies dramatically. For instance, 
the user may need to make three edits based on a generated result 
to complete a large pipeline that requires 20 edits from scratch. 
In another pipeline, the user also needs to do three edits starting 
from the generated result, but the whole pipeline only takes three 
edits to fnish. Averaging these absolute values does not provide 
reasonable insights into how accurate the generation is. Therefore, 
we reported an averaged ratio of user interactions required to 
complete a pipeline “from our generated pipeline” to that “from 
scratch” as our target metric in the technical evaluation. 

D User Evaluation 

D.1 Semi-structured Interview Script 
[ Introduction ] ( Start timing! 60 min max. ) 
Hello, my name is X. 
First, I would like to thank you for your participation and 

completing the consent form. Today, you will be a participant in a 
user study regarding machine learning and visual programming. 
Your data will be kept anonymous. Additionally, as a researcher I 
have no position on this topic and ask that you be as open, honest, 
and detailed in your answers as possible. Do you have any questions 
before we begin? 

Basically, visual programming borrows the metaphor of block 
building and allows novice users to develop digital functionalities 
without writing codes. 

[Show Visual Blocks] 
Here, each block is called a node, and each node takes in specifc 

inputs, then returns the desired outputs. What you can do is to 
connect a series of nodes together as a pipeline to achieve a high-
level goal. 

We are going to walk you through our Visual Blocks system and 
ask you to actually use Visual Blocks in two conditions to create a 
few applications. 

[ Tutorial ]( Start timing! 10 min max. ) 
Before we get started, let us do a tutorial of our system. 
[ Study and TLX ]( Start timing! about 30 min ) 
[Leverage the counter-balanced sheet and give user a task] 
[Think aloud. Have a short discussion with the user. What’s the 

user’s plan to achieve this given functionality?] 
[ Interview ]( Start timing! about 15 min ) 
1. What’s your impression of Visual Blocks / InstructPipe 

[counterbalanced]? Do you need many edits / operations to make 
it work? 

2. Are there any pipelines you come up with in work scenarios / 
casual scenarios? 

3. What works with InstructPipe? In what specifc scenarios will 
InstructPipe be very helpful? 

4. What does not work with InstructPipe? Would you give me 
an example? 

5. Do you have any suggestions to improve the design of both 
systems? 

6. Which kinds of technologies would be interesting to add? 

7. What applications do you want to start with InstructPipe? 
And what applications do you want start without it? 

That’s all for our user study. Thank you for your participation 
and we will compensate for your time. 

D.2 User Study Pipelines 
Figure 14 and Figure 15 visualize two pipelines we required the 
participants to complete in our user study. Figure 15 is a multimodal 
pipeline that allows participants to interact with AR efects in 
real time. Our technical evaluation shows that InstructPipe can 
generate this pipeline accurately: the averaged ratio of human 
interactions = 5.2%. Figure 15 is a text-based pipeline that provides 
participants with a summary of the news searched from Google. 
The technical evaluation reveals that InstructPipe cannot generate 
this pipeline accurately without further human interaction, and the 
average ratio of additional human interactions is 27.8%. While the 
generated diagram (with error) is not deterministic, we observed 
that InstructPipe commonly generates the pipeline in Figure 14 
without “URL to HTML” or “PaLM Text Generator” nodes. The 
error implies that the LLM may misinterpret 1) the data from the 
“selected text” port of the “String picker” node is the texts on the 
web instead of the web URL and 2) that “Text processor” has the 
LLM capability to process the texts instead of simply combining 
two texts. 

Note that even though InstructPipe may be able to complete the 
pipeline structure in Figure 15 from users’ instruction, we observed 
that participants still need to fne-tune their keywords to get an 
ideal pair of sunglasses. Additionally, the default anchor value is 
“Face top”, so participants need to use the drop-down menu on the 
“Virtual sticker” node to change the value to “Eyes”. This further 
motivates us to use the metric of “Time” in addition to the number 
of user interactions in our study. Our demo video also covers the 
workfows of these two pipelines. 

D.3 Assistant Provided to the Participants in the 
User Evaluation 

In the user evaluation, our goal is to make the interface condition 
(either InstructPipe or Visual Blocks) as the only independent 
variable that changes our dependent variables (section 5.2). Similar 
to user evaluations of other early-stage HCI research, we had to 
improvise for lacking system afordances. As an example, we would 
include help menus and error recovery models in the future versions 
of our system, but at this early stage, we relied on in-person help 
to nudge and assist our user study participants. We took actions 
(i.e., assistants) in the user evaluation to ensure the study is under 
an appropriate amount of control as well as maintain the fairness 
of our study. 

Here, we elaborate on two examples of assistants we provided 
in the user study. 

In the InstructPipe condition, one participant started their 
“instructions” by dragging a text box into the visual programming 
workspace and began typing. When noticing this issue, we kindly 
asked the participant whether s/he wanted to write instructions 
or build a pipeline from scratch. S/he then noticed this issue and 
clicked on the “InstructPipe” button to write prompts. Note that 
we explicitly taught every participant how to use InstructPipe 
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Table 3: Participant demographics for the user study, showing various demographic characteristics and skills relevant to 
InstructPipe. 

ID Job Title Self-identified
Gender

Age
Group

Programming
Experience

Machine
Learninig Skill

LLM
Usage

P1 Product Manager Woman 25 - 34 Beginner Beginner At least once a month
P2 Image Tuning Engineer Man 35 - 44 Intermediate Beginner At least once a week
P3 Program Manager Woman 45 - 54 No experience No experience At least once a week
P4 Hardware Engineer Man 35 - 44 Intermediate No experience At least once a month
P5 Technical Program Manager Man 35 - 44 Beginner No experience At least once a day
P6 Senior Hardware Engineer Man 35 - 44 Beginner No experience At least once a month
P7 Technical Program Manager Woman 18 - 24 Beginner Beginner Never used it
P8 Technical program manager Man 25 - 34 No experience No experience Multiple hours every day
P9 Solutions Engineer Man 25 - 34 Beginner No experience At least once a month

P10 Program Manager Man 55 - 64 Beginner Beginner At least once a month
P11 Program Manager Woman 35 - 44 No experience No experience Never used it
P12 Lab Manager Man 35 - 44 Intermediate Beginner At least once a week
P13 Partner Development Manager Man 25 - 34 Beginner Beginner At least once a week
P14 Hardware Engineer Man 25 - 34 Beginner Beginner At least once a week
P15 Global Supply Manager Man 25 - 34 Beginner No experience At least once a month
P16 Global Supply Manager Woman 55 - 64 No experience No experience At least once a week

Figure 14: Text-based pipeline. The “String picker” node provides users a drop-down menus to select one URL from a list of 
URLs returned by “Google Search”. “PaLM Text Generator” is an LLM used to summarize the full HTML page. 

Figure 15: Real-time multimodal pipeline. The “Keyword to 
image” node is used to search a sunglasses image, and the 
“Virtual sticker” node anchors the sunglasses onto the user’ 
face. 

and asked participants themselves to go through the instruction 
processes in the training task (Figure 7). 

In the Visual Blocks condition, one participant frst dragged a 
“Virtual sticker” into the workspace when s/he wanted to build 
the multimodal pipeline as required (Figure 15). After a while, 
s/he asked us for the meaning of “landmarks” on the frst input 
port of the “Virtual sticker” node (Figure 15). We then answered 
this question and provided a hint on the “Face landmark” node 
(Figure 15) that could produce the “Face landmarks” required by 
the “Virtual sticker”. While we had explained all the nodes that the 

participants need to use in the study in the training task (Figure 7), 
we consider such technical questions reasonable because all of 
our participants are non-experts. Programming itself is a difcult 
skill, and it is quite common that people may forget some of the 
knowledge that they have just learned. Instead of being silent and 
keeping the participants stuck on a technical issue, we believed 
ofering technical help was an important action we must take to 
ensure the data quality we collected in the study. 

These anecdotes in the user evaluation reveal several limitations 
of the visual programming system: some designs may not be very 
intuitive to non-experts. Since the goal of our user evaluation is 
understanding the benefts of InstructPipe compared to Visual 
Blocks (without AI assistants), we made our best eforts to 
take action to prevent the efects caused by other factors from 
infuencing our data. Meanwhile, we also encourage future work 
to further explore the system design so that future users can more 
easily use our assistant in visual programming. 
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Table 4: The counterbalance sheet of the user evaluation. Each cell is in the format of “Interface / Pipeline”. “Instruct” and “VB” 
mean the “InstructPipe” and “Visual Blocks” conditions, respectively. “Search” and “Tryon” represent the “text-based pipeline” 
(Figure 14) and the “real-time multimodal pipeline” (Figure 15), respectively. 

ID Step 1 Step 2 Step 3 Step 4 
P1 Instruct / Tryon Instruct / Search VB / Tryon VB / Search 
P2 VB / Tryon VB / Search Instruct / Tryon Instruct / Search 
P3 Instruct / Search Instruct / Tryon VB / Search VB / Tryon 
P4 VB / Search VB / Tryon Instruct / Search Instruct / Tryon 
P5 VB / Tryon VB / Search Instruct / Tryon Instruct / Search 
P6 Instruct / Tryon Instruct / Search VB / Tryon VB / Search 
P7 VB / Search VB / Tryon Instruct / Search Instruct / Tryon 
P8 Instruct / Search Instruct / Tryon VB / Search VB / Tryon 
P9 Instruct / Tryon Instruct / Search VB / Tryon VB / Search 
P10 VB / Tryon VB / Search Instruct / Tryon Instruct / Search 
P11 Instruct / Search Instruct / Tryon VB / Search VB / Tryon 
P12 VB / Search VB / Tryon Instruct / Search Instruct / Tryon 
P13 VB / Tryon VB / Search Instruct / Tryon Instruct / Search 
P14 Instruct / Tryon Instruct / Search VB / Tryon VB / Search 
P15 VB / Search VB / Tryon Instruct / Search Instruct / Tryon 
P16 Instruct / Search Instruct / Tryon VB / Search VB / Tryon 

D.4 Counter-Balancing and The Replication 
Number 

Table 4 presents how we perform counterbalance in the user evalu-
ation. We counterbalanced both the interface factor (“InstructPipe” 
and “Visual Blocks”) and the pipeline factors to reduce the learning 
efects. We then replicated the order four times so that we collected 
multiple data from diferent participants in each unique study order. 
This helps strengthen the power of the data we collected in the 
study. Note that, in the group of P5 - P8, we fipped the orders 
within P5 and P6 as well as P7 and P8, but this does not cause a 
diference in the counterbalance process. 
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