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Figure 1: SpeechCompass creates user-friendly speech transcripts for group conversationswithmultiple speakers. Left: Current
solutions concatenate and mix the transcribed speech when multiple people participate in a conversation, which makes it
challenging to read and understand the transcript. Right: SpeechCompass addresses this limitation through real-time, multi-
microphone speech localization, where the direction of speech allows diarization, visual separation, and guidance (e.g., arrows)
in the user interface.

Abstract
Speech-to-text capabilities on mobile devices have proven helpful
for hearing and speech accessibility, language translation, note-
taking, and meeting transcripts. However, our foundational large-
scale survey (n=263) shows that the inability to distinguish and
indicate speaker direction makes them challenging in group con-
versations. SpeechCompass addresses this limitation through real-
time, multi-microphone speech localization, where the direction of
speech allows visual separation and guidance (e.g., arrows) in the
∗First and last author contributed equally to this work.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/3706598.3713631

user interface. We introduce efficient real-time audio localization
algorithms and custom sound perception hardware, running on
a low-power microcontroller with four integrated microphones,
which we characterize in technical evaluations. Informed by a large-
scale survey (n=494), we conducted an in-person study of group
conversations with eight frequent users of mobile speech-to-text,
who provided feedback on five visualization styles. The value of
diarization and visualizing localization was consistent across par-
ticipants, with everyone agreeing on the value and potential of
directional guidance for group conversations.

CCS Concepts
•Human-centered computing→ Accessibility technologies;
Human computer interaction (HCI); Mobile devices.
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1 Introduction
Recent advances have enabled real-time automatic speech recogni-
tion (ASR) in mobile and embedded hardware, supporting a range
of conversational scenarios [2, 46]. Real-time captioning can en-
hance human communication in various ways, e.g., for real-time
translation between languages, transcriptions during an interview,
automatic subtitle generation, hearing accessibility [38, 55], and
note-taking. However, there are still unsolved limitations with real-
time speech-to-text — specifically, the ability to distinguish multiple
speakers (speaker diarization) and tracking the direction of speech
(localization).

Consider the following scenario: Throughout the day, a person re-
lies on a mobile phone with real-time captioning to understand speech.
However, at a dinner table with multiple people, the conversation is
difficult to follow since the app cannot distinguish between speakers
and concatenates all speech into a single paragraph. Additionally,
since the person needs to look at their phone regularly, they struggle
with following the turn-taking across speakers and don’t know where
to look if there is a speaker change. Also, irrelevant nearby conversa-
tions get transcribed as well, which can cause confusion and privacy
implications.

Many of the challenges in the scenario stem from the spatial
complexities of audio, which are challenging to capture with a
single-microphone ASR system. The benefits of multi-microphone
topologies for localization have been demonstrated in numerous
applications, such as public safety [61], virtual reality [39], robot
navigation [43], mobile computing [36, 49] and audio accessibil-
ity [27, 31]. In this work, we leverage arrays of multiple micro-
phones and apply techniques for microphone array signal process-
ing to demonstrate how this technology could improve ASR perfor-
mance and usability in such scenarios. Specifically, we identified
opportunities for improvements in three areas:

(1) Speaker diarization. The transcript can visually separate dif-
ferent speakers based on the direction of the speech.

(2) Localization. For spatial sound visualization, the screen can
display the direction of the incoming sound.

(3) Selective attention. The interface can allow the user to select
speech of interest and filter out self-speech.

In this work, we developed SpeechCompass, a solution to add
diarization and speech localization to mobile captioning. It includes
three main parts. First, low-latency localization algorithms that can
run on generic microcontrollers or mobile phones. Second, a com-
pact 4-microphone phone case that allows 360-degree localization
on a low-power microcontroller. Third, a mobile captioning app
that shows how sound localization can be visualized in different

ways and used to support multi-speaker conversations through
diarized transcripts. We also run our algorithm on an off-the-shelf
mobile phone with only two microphones to demonstrate that lim-
ited 180-degree localization is possible in the app without additional
hardware.

While machine learning approaches to single-source speaker
diarization have been improving [52], our multi-mic approach has
the advantage of lower computational cost, latency, and privacy, and
thus is inherently suitable for real-time ASR applications on low-
power, low-cost microcontrollers. It is also language agnostic and
can work for sounds other than speech. Our approach is tied to the
position of the phone and the speaker, which can be advantageous as
diarization can be immediately reconfigured by moving the phone.
This paper shows how traditional microphone array processing can
significantly benefit diarization and localization for mobile ASR.
While diarization with microphone arrays has been well studied [4],
it has yet to be applied to mobile ASR and related interfaces.

1.1 Contributions
The contributions of this work are:

• Real-time sound localization algorithms andoptimized,
embedded multi-microphone hardware, implemented
both as phone-case prototypes with a low-power microcon-
troller (<20 ms processing time) and on a mobile phone with
constrained microphone hardware. The code and design files
are available via Github.1

• Mobile captioningUIs for group conversations, enabled
through speech localization and diarization, and imple-
mented as mobile speech-to-text applications with different
visualization and interaction techniques.

• Technical evaluation of localization and diarization
using the optimized algorithms andhardware. We char-
acterize localization accuracy and estimation time under var-
ious signal-to-noise conditions and speaker configurations,
and evaluate diarization accuracy.

• Foundational large-scale survey (n=263)with frequent
users of captioning technology, showing that noise and
speaker separation are important and frequent challenges
with existing solutions.

• Lab study (n=8) and large-scale survey (n=494) of mo-
bile interfaces and visualizations with frequent users
of captioning technology. Informed by a large-scale sur-
vey, we designed a lab study with eight frequent users of
captioning technology. We contribute insights into interface
preferences, customization, and benefits since diarization
and localization have not been previously studied for mobile
ASR.

2 Related work
This section first discusses previous works in relevant audio appli-
cations like diarization, real-time audio transcription, and visual-
ization interfaces. Then, we discuss the relevant literature on audio
multi-microphone processing.

1github.com/google/multi_mic_audio
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Figure 2: Overview of the SpeechCompass phone case prototype. A) A mobile phone application interface with a mounted
multi-microphone phone case. B) Inside and outside view of the prototype with a flexible PCB microphone mount and a
compact main printed circuit board (PCB). C) Pictures of the main PCB with a top and bottom view.

2.1 Real-time mobile speech recognition
CART (Communication Access Realtime Translation) is a well-
established method for providing real-time captions. A trained
professional, typically using specialized software and a stenogra-
phy machine, transcribes speech into text as it is spoken. CART is
frequently used in broadcasting scenarios such as lectures and pre-
sentations. Recent advances in machine learning enabled real-time
automatic mobile speech captioning, such as Live Transcribe [2]
and Microsoft Translator [46], and also on head-worn displays [50].
One of the main motivating uses for audio-to-text translation was
audio accessibility, and research has shown the benefits of real-time
ASR for hearing accessibility in scenarios like classrooms [13, 38].
Research has shown various improvements to real-time ASR, such
as ways to display transcription confidence [9] and customizing
fonts appearance to improve readability [8].

2.2 Speaker separation and diarization:
Transcripts that distinguish speakers

Studies suggest that there is still room for improvements in, e.g.,
accuracy and usability [22].We particularly observe that existing ap-
proaches have yet to leverage microphone arrays in mobile devices
to augment ASR. We outline the existing techniques in Table 1.

Acoustic beamforming relies on classical signal processing tech-
niques such as beamforming and localization from multiple micro-
phones [4] to separate and diarize speakers. The main challenge
for speaker separation is estimating a beamformer for each speaker
using localization and other cues. Recently, neural networks have
been employed to successfully aid in beamforming [28, 65]. How-
ever, acoustic beamforming has been mainly applied to meeting

room scenarios with a static microphone array, while SpeechCom-
pass uses a similar multimicrophone technology for localization,
which is applicable to mobile ASR throughout a user’s everyday
life.

Blind source separation. This approach separates the speakers
using a single microphone without additional cues. The technique
is challenging for classical signal processing, but various machine-
learning techniques have been successful [19, 30]. Blind speaker
separation is effective when done offline on the entire audio file,
providing the model with access to both future and past content.
This is, however, not possible in a real-time causal system, as in
this paper, since the future is not accessible, and the model only
processes a limited amount of past information. These constraints
for real-time casual systems make blind separation inapplicable for
real-time transcription of conversations.

Recently, multi-microphone approaches have been combined
with speaker separation and diarization. In [59] and [60] Taherian
et al. tackle the challenge of speaker separation in multi-speaker sce-
narios, focusing on conversational or meeting environments. They
leverage multi-channel audio and deep learning models to improve
separation accuracy to enhance the performance of downstream
speech applications like ASR. In one project [59], the authors lever-
age an end-to-end diarization system to identify individual speaker
activity and then use this information to guide a multi-talker sepa-
ration model. In another approach [60] a multi-input multi-output
(MIMO) complex spectral mapping model allows for robust speaker
localization, and is used to reduce speaker splitting errors. The
complexity of the processing and non-causal components make
these solutions unsuitable for real-time processing.
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Table 1: Comparison of speaker diarization and separation technologies. The comparison shows that only SpeechCompass
can support diarization and visualize sound direction on mobile devices.

SpeechCompass 
[this work]

Acoustic 
beamforming 

[5, 25]
Audio-visual
[15, 18, 31]

Multiple mic blind 
source separation 

[55]

Single mic blind 
source separation 

[16, 27]

Audio embeddings 
as voice fingerprint 

[54, 58]

Sound direction (360°) Yes Yes No Yes No No

Mobile / on-the-go Yes No No No Yes Yes

Computation cost Low Low High High High Medium

Real-time Yes Yes No No No Yes

Calibration free Yes Yes Yes Yes Yes No

Privacy preserving Yes Yes No Yes Yes No

Number of mics 3-4 3+ 1 2+ 1 1

Voice fingerprint audio embeddings.This approach extracts unique
speaker embeddings from a single microphone [57, 62] and uses
them for diarization. Principal Component Analysis (PCA) or other
unsupervised methods are typically done on the embeddings. The
speaker embedding approach has been the primary go-to for real-
time diarization since it can run causally. Adding multi-microphone
data to speaker embeddings has improved diarization accuracy [57].
A key disadvantage of speaker embeddings is its reliance on implicit
or explicit speaker enrollment, as the initial number of speakers is
unknown. Requiring every conversation partner or nearby speaker
to explicitly register through a voice sample is particularly imprac-
tical in dynamic mobile scenarios. Furthermore, there are privacy
concerns as speaker embeddings can be considered biometric infor-
mation, and asking people to enroll would be in conflict with the
discreetness that is often desired for accessibility aids.

Audio-visual. Another approach has been to process audio and
video using a multimodal model to separate speakers [18, 21]. The
camera feed can help infer the active speaker from facial and lip mo-
tion when correlated with audio. Researchers have proposed deep
learning models for audiovisual speaker separation that operate in
the time-frequency domain and use cross-attention for audiovisual
fusion [34]. The audio-visual model, while outperforming an audio-
only model, however does not leverage spatial information from
multiple microphones. The non-causal nature of the separation
model (bi-LSTM) makes it ill-suited for real-time applications. This
approach works best for meeting rooms and post-processing of
recordings, since for mobile ASR, users typically do not point a
camera at their conversation partners. There is potential for such ap-
plications for head-worn cameras (e.g., in smart glasses), although
such approaches would still be dependent on a suitable field of view,
sufficient bandwidth, and computing to process video streams. Such
approaches will also have power and thermal implications for em-
bedded devices with limited battery size.

Several commercial off-the-shelf solutions exist formobile speaker
diarization. The Ava mobile application [6], for example, allows
diarization by connecting each speaker’s smartphone to a network.
However, this solution requires every speaker to set up and use
their phone, which adds setup overhead. Speaksee [58] is another
solution that utilizes clip-on microphones for each speaker, with
each microphone exclusively picking up speech from its designated
wearer. These microphones connect to a central hub that provides

diarized transcripts. This solution, while effective, requires dedi-
cated hardware, making it more appropriate for formal meeting
room scenarios. While our approach may be less accurate than
these solutions, because we are not using a dedicated microphone
for each speaker, it does not depend on instrumentation or prepa-
ration by conversation partners, which is a crucial advantage in
real-life situations whether with friends or strangers. It may even
be prohibitive in certain scenarios where conversations are very
brief (e.g., watercooler conversation) or the person wants to be
discreet with their hearing accessibility needs.

2.3 Visualizing non-speech sounds for
accessibility use cases

Speech is not the only aspect of sound that has been transcribed.
For example, sound event recognition and visual alerts are helpful
in hearing accessibility [11, 20, 23, 33]. Expressive captions [15],
for example, visually convey the speech’s emotion by altering the
text’s rendering based on the detected emotion. Closest to this work,
research has looked into displaying sound localization cues from a
microphone array using head-worm displays, such as HoloLens [27]
and Head-Mounted displays (HMD) [32]. Another work integrates
localization into a watch [35] and displays sound location with
LEDs. These proof-of-concept research projects use off-the-shelf
devices, which do not meet power consumption, ergonomics, or
form factor requirements needed for all-day use in everyday lives.
In contrast, we leverage mobile phones that users already carry
and use daily. While we demonstrate a prototype in a phone case
form factor, the embedded hardware could also be implemented in
wearable devices, such as head-worn displays.

Due to captioning’s focus on speech, fine audio qualities and
structures, such as rhythmicity, are lost. To communicate such qual-
ities, researchers have proposed real-time visualizations such as
audio spectrograms [25] or Stabilized Auditory Images (SAI) [44],
a visualization grounded in models of the brain, or tactile cues [16].
However, these approaches not only require extensive user training
but also do not convey sound direction or leverage spatial informa-
tion. Our approach can, however, be combined with those existing
methods to extend their expressiveness.
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2.4 Sound localization strategies
Multiple research projects have investigated sound localization,
which can be divided into active and passive localization. Active
localization sends out a signal and listens to the response. For ex-
ample, Cricket [53] showed an indoor localization system using
ultrasound beacons and detectors around the room. Active localiza-
tion does not apply to speech, which is the main target of this paper.
As used in this work, a passive localization system listens with
an array of microphones. Example of passive localization includes
gunshot localization [61], rendering of a sound source in virtual
reality [39], robot navigation [43], and people tracking [14]. The
Time Difference of Arrival (TDOA) is a popular technique for local-
ization, where measuring the arrival delay between synchronized
microphone pairs, allows the use of simple geometry to estimate
the angle of arrival.

Multiple localization techniques have been proposed in the liter-
ature based on the popular and effective TDOA estimation method.
Most are variations [17, 40] on generalized cross-correlation [37],
performed in the frequency domain. Other approaches have been
demonstrated, such as localization with one microphone [54] by
adding structures to the microphone that change the sound based
on incoming angle, or using two thin wires that change resistance
based on the direction of sound [1].

Recent high-end phones use two or three microphones, which
allows limited localization on some phones [36, 49]. However, the
microphone placement on these phones is typically optimized for
phone calls and video capture, with placements that are less well
suited for localization, as microphones on the front and back are
blocked when the phone is held or placed on a table.

Several development platforms offer localization. For example,
MiniDSP [47] makes eight and sixteen microphone devices for lo-
calization and beamforming. ODAS [26] is an open-source platform
for microphone array localization. Those platforms are, however,
not designed for portable, battery-powered devices, given that their
digital signal processing (DSP) chips have high power consumption
(∼500 mA).

Although mobile phone ASR has many users, previous work
shows that diarization and sound localization still need to be ad-
dressed, especially to make it practical for conversations with multi-
ple speakers. While machine learning has improved diarization, the
approaches are still challenging to apply to mobile ASR due to their
numerous limitations (See Table 1). Traditional multi-microphone
processing techniques provide promising strategies for mobile ASR,
which are practical today as shown through our technical imple-
mentation and evaluations.

3 Challenges with mobile captioning:
Large-Scale survey with 263 frequent users

As we were interested in exploring the potential for more advanced
mobile speech perception, we conducted a brief large-scale sur-
vey to learn about the challenges of using captioning for speech
understanding in in-person meetings and conversations.

3.1 Participants
We used Google Surveys [24] to deploy a survey to the general
population in the US of all ages and genders (“Android users of the

Google Opinion Rewards app” ), screening for individuals that use
technology to understand speech in meetings and conversations,
and are frequent users of captioning technology. Our goal was to
recruit deaf or hard-of-hearing participants, as we believed that
they would have the most relevant experience and insights around
mobile captioning technology and interfaces. To mitigate spam, the
survey system analyzes question response times. By considering
the distribution of response times across questions, it adapts to
different question types and response patterns, rejecting sessions
with unusually fast responses.

We acknowledge that our survey’s focus on frequent users of cap-
tioning technology and the growing user base for mobile captioning
limits its relevance for other populations, such as individuals who
identify with Deaf culture and might be less likely to rely on ASR
technology [10]. Unfortunately, we cannot quantify the represen-
tation in the survey since restrictions from our institution do not
allow us to collect participant hearing levels or use of sign language.

Of the 1502 respondents that met our criteria, we focus on the
263 participants (18%), who reported that they used captioning
technology to understand people (not TV/video) multiple times per
week or more frequently, and for 2 hours or more on the days that
they used it. For these 263 participants, the platform reported that
49.8% were women, 48.7% men, and 1.5% unknown, across all age
ranges (27%: 18–24, 33%: 25–34, 15%: 35–44, 12%: 45–54, 6%: 55–64,
7%: 65+).

The participants were prompted to select challenges among the
choices from the list in Figure 3. The choices were synthesized by
user feedback from our previous experience with mobile captioning
and informed by previous work in mobile captioning [31, 50]

3.2 Survey results: The use of captioning to
understand people in conversations

64% of the participants reported daily use of captions in meetings or
conversations to understand people, whereas 36% used it multiple
times per week. Half of the participants (49%) use technology to
understand people face-to-face for 2-3 hours on the day of use.
Almost a quarter (23%) of participants use captions for 4-5 hours on
the days of use and another quarter (28%) for 6 or more hours. Real-
time captions, such as CART (69%), and the Android Live Transcribe
and Sound Notifications app (55%) were the top two technologies
that were used daily to understand people.

The top two issues with current transcription technology, as
reported by our participants, were background noise (60%) and
the combining of text from different speakers (46%), without the
ability to separate them. Participants selected all that apply from
the choices shown in Figure 3.

Finally, we asked participants about scenarios that are known to
be challenging with today’s transcription technology but have the
potential to be addressed with more advanced microphone arrays
and speech perception algorithms. Scenarios of interest included
conversations where ignoring music, noise, or adjacent speech
would be critical. We were also interested in group conversations
and situations where separating speech from two people is critical.
68-70% of participants experienced these scenarios multiple times
per week or more frequently, whereas only 11-12% rarely or never
experienced them, as shown in Figure 4.
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0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%60%

Mistakes with background noise
Combines/mashes text from different speakers

Have to look away from person I'm talking to
Can't easily review transcript history

Doesn't work with lectures/presentations
Don't want to see my speech

Biggest challenges with my current transcription technology (n=263)

88 (33%)

120 (46%)

59 (22%)

45 (17%)

92 (35%)

157 (60%)

Figure 3: Participant responses to the question What are the biggest challenges with your current captioning or transcription
device/technology? (select all that apply)?

0%5% 10%15% 20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

Rarely/never
A few times/month
Multiple times/week
Daily
Multiple times/day

31 (12%)52 (20%)68 (26%) 43 (16%)69 (26%)

61 (23%) 56 (21%) 65 (25%) 53 (20%) 28 (11%)

70 (27%) 34 (13%) 76 (30%) 46 (18%) 31 (12%)
Group conversations where it is critical to 
separate speech from 2 people

1:1 where it is critical to ignore adjacent speech

Conversations where it is critical to ignore music / noise
Rarely / never
A few times / month
Multiple times / week
Daily
Multiple times / day

Figure 4: Survey results of how often participants encountered challenging scenarios with today’s transcription technology.
The number of participants and percentage is shown for each choice.

3.3 Discussion
Our large-scale survey enabled us to identify essential challenges
with current transcription technology for frequent users of cap-
tioning and shows that 68-70% of the participants are frequently in
situations that today’s technology cannot adequately support. The
findings suggest that more advanced speech technology for sup-
pressing noise from adjacent speakers, music, or noise could help
address those issues and that speech separation technology can
potentially improve group conversations through more readable
transcripts.

4 SpeechCompass system
This section details the SpeechCompass hardware, algorithms, and
phone application. The SpeechCompass system diagram is shown
in Figure 5.

4.1 Design considerations
Based on the foundational large-scale survey with 263 frequent
users of mobile captioning (Section 3), previous work, and envi-
sioned user journey, we outline the following design goals for the
SpeechCompass prototype:

• All-day use. The prototype should be low-power, ensuring
that the battery could last a day or more, as 28% of survey
participants use captioning technology for six or more hours
daily. Current DSP solutions [26, 47] draw about 500 mAh,
which would require impractically large batteries, or signifi-
cant impact on the phone battery.

• Accurate 360° localization. The survey participants indi-
cated that a major challenge is how transcription apps com-
bine text from different speakers, which makes it difficult
to use in group conversations. To address this challenge,
localization accuracy should be under 20° [45] to match hu-
man localization abilities and accurately distinguish differ-
ent speakers. Also, 360° azimuth localization is needed as
it avoids front-back confusion, as illustrated in Figure 6A.

Also, since group conversations are dynamic, speakers and
the phone may be located at any angle around the user.

• Integrationwith existing phones and applications. 55%
of the survey participants use mobile assistive apps, which
is a strong motivator for us to target mobile phones, as they
are already always with the user. The device should have
multiple input and output options for audio and data, be de-
signed to interface with external applications, and physically
integrate with mobile phones.

• Low-latency, real-time processing. To integrate with ex-
isting applications, the localization needs to be faster than
real-time transcription latency, which is expected to be in the
30–300ms range [66]. Minimizing latency requires hardware-
specific algorithm development and bypassing typical oper-
ating system latency.

For someone who uses mobile captions daily, adding Speech-
Compass for group conversations should be a low effort. The person
would use the SpeechCompass phone case instead of a regular one.
Their favorite captioning app would automatically use sound lo-
calization data to diarize the captions and separate the speakers.
Considering the scenario where the person struggles to use mobile
captioning around a dinner table, the text from different speakers
would be uniquely presented (e.g., using colors or arrows) based on
their position around the table. As phones add more microphones,
SpeechCompass could become a pure software solution, utilizing
multiple microphones on the phone.

4.2 Multi-mic system for embedded perception
We chose a 110 MHz M33 ARM Core (STM32L55, STMicroelec-
tronics) as the main microcontroller. This processor provides the
low-power and high computing capabilities needed for localization.

Four digital microphones (MP34DT01-M, STMicroelectronics),
which use the pulse density modulation (PDM) protocol, were ar-
ranged to have the largest distance between the microphones for
finer resolution and support of 360° of azimuth angles. Although



CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Microphone

Microphone

Microphone

Microphone

PDM
DFSDM GCC-PHAT

6X (for each unique mic pair)

Calculate angle
of arrival

Coordinate 
transform

Kernel 
Density 

Estimation

ASR

Display diarized
ASR UI

Power

SpeechCompass hardware (Phone case)

Angle 
SpeechCompass 

app

Phone 
microphone

Phone

Microcontroller

USB-C

Figure 5: SpeechCompass system diagram. The phone case contains four microphones connected to a microcontroller. The
audio localization algorithms run on the microcontroller, and the angle estimation is sent over USB to the phone. The Speech-
Compass app combines ASR input and angle estimations to provide diarization and directional guidance for the mobile cap-
tioning UI.

three microphones could resolve similar angles, an additional mi-
crophone improves localization accuracy. Furthermore, when hand-
held, the four-microphone design is more robust to occlusions from
the hand or fingers. The microphone data was collected at 16-bit
resolution and 44.1kHz. The PDM to PCM (pulse-code modulation)
conversion was done by the Digital Filter for Sigma-Delta Modu-
lator (DFSDM) peripheral on the microcontroller. The same clock
signal drove the four microphones, so they remained synchronized.
We used flexible PCB-mounted microphones and a small main PCB,
as shown in Figure 2B, C.

4.3 Localization
The localization is computationally intensive, as it requires estimat-
ing the delay between all unique pairs of microphones. The delay
estimation is usually done using cross-correlation.

We implemented a variant of Generalized Cross-Correlation
with Phase Transform (GCC-PHAT) [37]. This approach is more
robust to noise than standard cross-correlation and takes advantage
of ARM’s CMSIS libraries [5], which enable more efficient com-
putations. Then, the time delay between the two microphones is
extracted from the cross-correlation. Since the microphone geome-
try is known, the time delay is converted into the angle of sound
arrival. The localization equations are provided in Appendix A.1.

With just two microphones, there is front-back confusion. Differ-
ent sources positioned at the inverse angle about the microphone
pair axis will have exactly the same TDOA. (See Figure 6A).

To accurately determine the 360° azimuth angle, we need at least
three microphones, positioned such that they span the largest plane
possible (they cannot all be in-line).

Considering the uncertainties of sound propagation, a statistical
approach has to be used to determine the actual source location.
We determine the TDOA for each microphone pair (six unique pairs
for four microphones) and add a second potential TDOA. Then,
we perform a coordinate transform so that each angle of arrival is
aligned with global azimuth angles. Finally, we do Kernel Density
Estimation (KDE) with a Gaussian kernel (bandwidth = 25) with the
600 latest samples. The highest peak will correspond to the angle of
arrival, as demonstrated in Figure 6. The KDE was wrapped around

between 0 and 360° to address the discontinuity around 0 and 360°.
The localization is evaluated in Section 5.

4.4 SpeechCompass application: Mobile
captioning with speaker separation

To investigate the SpeechCompass technique’s potential, we im-
plemented a mobile ASR application (Android) with localization
features, as shown in Figure 7. We used the USB Serial for Android
library [48] to establish a data connection between the phone and
the SpeechCompass microcontroller, which transmits localization
data over USB-C. The application improves over existing single-
source ASR applications in three ways, which we describe below.

Real-time sound source visualization. We use a semicircle
overlay around the edges of the screen to indicate the current sound
direction. The semicircle moves according to the azimuth angle
of the audio, as shown in Figure 7B. (Alternatively, a vertical line
could be used if only 180° localization is available.) The radius of
the semicircle is scaled according to localization confidence, corre-
sponding to the KDE peak, with a larger semicircle corresponding
to higher confidence.

Speaker diarization in transcription. APIs for mobile and
web-based ASR have advanced significantly in recent years, but
those APIs do not distinguish between multiple speakers or provide
direction of the incoming speech. By combining SpeechCompass
with mobile ASR, we enable legible transcripts by visually separat-
ing speech from different directions. We use the Android Speech
Recognition API [3] to obtain real-time transcription and display
the results on the mobile phone screen as vertically scrolling cap-
tions. The transcript is colored by directly mapping the sound
arrival angle to the 360°color wheel, as shown in Figure 7C. In this
mapping, the text is colored green if sound arrives from the top
of the phone (around 90°) and red for bottom arrival (270°). Other
direction indication options include showing a colored arrow next
to the text or a directional glyph, as shown in Figure 7A, B. To
accurately determine text color, we synchronize speech recognition
and azimuth measurements by buffering azimuth angles after the
onBeginningOfSpeech() callback and stopping after the onEndOf-
Speech() callback. This way, only the angles detected during speech
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Figure 6: Visualization of localizationmethodswith 2 and 3microphone configurations. A) Localizationwith twomicrophones.
The sound will arrive at microphone two before microphone one. This time difference could be used to estimate the angle of
arrival. However, with two microphones, ambiguity exists, as the source could be at the inverse angle, shown as a "potential
source." The graph on the bottom shows the kernel density estimation (KDE) with actual and potential sources. B) With three
or more microphones, this angle ambiguity can be avoided. In our implementation, we use four microphones. The KDE from
multiple microphone pairs will have the highest peak at the correct source.

Figure 7: Themobile phone application with different direction visualization options. A) Directional glyphs are arrows next to
the transcript, indicating the direction of speech. B) Minimap and directional glyph as radius inside the circle. C) Directional
cues embedded in the color of the text and boxes around the text. D) Enabling speech suppression for right and bottom speech
directions, as shown on the minimap.

moments are analyzed, ignoring changes during silence or back-
ground noise. We determine the resulting angle by computing the
mode of the angles in the azimuth buffer.

Speaker suppression. As 60% of the participants found mis-
takes with background noise to be an issue, we added unwanted
speech suppression. With the speaker diarization, we can simulate
speaker suppression, by letting the user hide speech from certain

directions, or their own speech. Our implementation allows tap-
ping on different edges of the screen. For example, as shown in
Figure 7C, tapping on the right side of the screen will hide/show
speech coming from the right.

5 Technical Evaluation
In this section, we report on our technical evaluations of the main
features of SpeechCompass. First, we characterize the underlying
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localization technology. We evaluate localization using an off-the-
shelf mobile phone (Pixel 6, Google) and 360° localization with the
SpeechCompass hardware. Then, we determine the compute time
for reliable localization, as it is critical for real-time diarization and
visualization. Finally, for the real-world applicability of SpeechCom-
pass, we characterize diarization accuracy in a realistic scenario
where we also measure power consumption.

5.1 Localization experiments setup
By its nature, localization can not be done precisely due to time
resolution. For example, with 80 mm microphone spacing and 44.1
kHz audio sampling rate, the maximum delay is ±10 samples (0.23
ms). This configuration provides a resolution of 9◦. However, the
actual accuracy is more nuanced, as it is obtained from multiple
microphone pairs with different spacing and depends on many
factors, such as the sound’s frequency, environment, and loudness.
To better characterize localization accuracy, we conducted a series
of experiments with the phone and SpeechCompass hardware. In
the setup, the device under test was mounted on a rotating platform.
A servo motor (XM430-W350-T, Dynamixel) was used to rotate
the device around its axis (azimuth angle) and was synchronized
with the data collection. A stationary speaker (S120, Logitech) was
mounted 1.5 meters away to provide a direct sound path. Using the
servo mount, the device was rotated by 10 degrees from 0–350◦ to
obtain azimuth angle error. At each position, data was collected for
15 seconds. The loudness was calibrated with a reference sound
meter (VL6708, VLIKE). The speech audio came from the audiobook
“Alice’s Adventure in Wonderland” [42]. Rain [56] was used as a
realistic environmental sound with white noise properties. Each
experimental condition was measured three times, and we report
the mean value.

5.2 Localization: Off-the-shelf smartphone
Many smartphones today have two or three microphones, which
has the potential to enable some localization. We investigate the
feasibility and accuracy of localization with an unmodified, off-the-
shelf phone (Pixel 6, Google). This phone has three microphones
placed at the bottom, top and near the rear camera, as shown in
Figure 8. The top and bottom microphones are on the side edge of
the phone, while the rear camera microphone is on the backside.

To characterize the opportunity and limitations, we ported our
localization algorithm to Java Native Interface (JNI), so it could
run on the Android platform. The two-mic-localization runs on the
phone in real time.

With only a 15 mm separation between microphones 1 and 2,
the delay between those two microphones was too small for useful
localization. However, the other two pairs — {mic 0, mic 2} and {mic
0, mic 1} — provided useful localization data. Given this geometry,
only 180-degree azimuth localization is possible for this device. If
the camera microphone (mic 1) had been placed on the left side of
the phone (with a larger baseline distance from mic 2), 360-degree
localization would have been feasible.

The mean error of environmental sound was 23.0 degrees, and
speech was 16.0 degrees. In comparison, humans also have up
to 20-degree azimuth error when localizing sound without visual
cues [45]. This demonstrates that localization on the phone can

still be useful in limited use cases, for example, if the user does
not expect any sounds from behind. We also observed that with
such a limited amount of data, a simple histogram performed better
than the Gaussian distribution approach, as there are not enough
statistics for a reliable distribution.

5.3 Localization: SpeechCompass 4-mic system
We varied two variables; type of sound (speech and environmental),
and loudness in sound pressure level (SPL). The loudness varied
from 50–65 dB SPL in 5 dB increments, where 0 dB corresponds
to the human hearing threshold. This range covered the span of
loudness typically experienced in daily conditions [29], from a
quiet office (50 dB) to a normal conversation (65 dB). The ambient
loudness in the experiment’s room was 45 dB, so experimenting at
this loudness or below was not practical.

The experimental results show that sound could be localized
reliably for both speech and environmental sound, with different
loudness, and with 360◦ coverage. The overall error is reported in
Figure 10A. The error was 11.1–22.1° for normal conversational
loudness (60–65 dB). In comparison, humans also have up to 20-
degree errors when localizing sound [45]. The error increased sig-
nificantly as the sound got quieter. The GCC-PHAT picks up the
loudest sound, thus making it difficult to estimate TDOA if the
sound source is under or at the environmental noise level.

Directional effect. The localization error has some dependence on
the source angle, with an overall sinusoidal trend, as can be seen
in Figure 10B. The lowest error was around 0, 90, 180, and 270°,
whereas the highest error was observed at 45 and 135°. This sensi-
tivity can be explained by the rectangular microphone geometry.
With the current coordinate system, an angle such as 90° results
in 4 out of 6 microphone pairs in the end-fire and/or broadside in
relation to the sound source. In such a configuration, the maximum
and minimum delays are obtained, thus easier to measure.

Type of sound. The error was lower for the environmental sound
(11.3◦ at 65 dB) when compared to speech (18.3◦ at 65 dB). There are
a few reasons why speech appears to be harder to localize reliably.
First, speech has a very complex acoustic pattern in comparison
to noise. There are many frequencies, sudden stops, and loudness
variations [63]. This results in more reverberations and reflections,
which can increase the error. Also, speech contains cyclic signals,
which have ambiguity when subjected to cross-correlation, espe-
cially for high frequency, and speech contains signals up to 4 kHz.

Effects of elevation angle. In the above experiments, we test the
azimuth angle error and keep the elevation angle at zero, so the au-
dio source and microphone array are leveled. In practical use cases,
the audio source might be located below or above the microphone
array. For example, with the microphone array on the table, the
speaker’s head is usually above the array. To characterize the effect
of elevation, we move the source elevation from -40 (source below
mics) to +40° (source above mics) in 20-degree increments, while
keeping the azimuth angle at 90°. The distance is kept at 1.5 meters
as in previous experiments and white noise is played at 65 dB. The
results in Figure 9 show minor azimuth error (under 2 degrees) at
-20 and +20° elevation. The error becomes more pronounced (up
to 9.2°) at -40 to +40° elevation, as the source moves outside of the
microphone 2-D plane. The 20° elevation would result in a height of
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Figure 8: Localization on a mobile phone. A) Microphone positioning and distance. B) Examples of the raw microphone data
from three microphones. The top graph shows the end-fire, with the bottom microphone facing the sound source, thus pro-
viding maximum delay between the microphones. The delay between mic 0 and mic 2 and 1 can be easily seen. The bottom
graph shows broadside, where the microphones are the same distance from the sound, and thus have the same delay.
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Figure 9: Effect of source elevation angle on the azimuth an-
gle accuracy.

0.55m, which would correspond to speakers sitting around a table
with the phone 1.5 meter away. The 40° elevation would result in a
height of 1.26m, approximately corresponding to speakers standing
around a table. The results therefore suggest that SpeechCompass
could work well for seated conversation partners, but would need
additional calibration to account for situations where speakers are
further above the microphone array.

5.4 Compute time to estimate direction
It takes 2.9 ms to compute the delay between two microphones on
the 110 MHz microcontroller. Therefore the time to collect one data
frame for six unique microphone pairs is 17.4 ms. This provides a
lower limit on time to estimate direction.

However, in practice, the estimation time could be much higher
due to the uncertain nature of sounds like speech, as multiple mea-
surements are needed for estimation. Therefore, we experimented
to understand how quickly the device can react to the onset of
sound in making an accurate direction estimate.

In a similar setup as the localization accuracy experiment, we
positioned the device 1.5 meters from the sound source. As in the
localization accuracy experiment, we used speech and noise, and
measured them at different angles. We collected data for 10 seconds
without sound, then turned on the sound and collected the data for

50 seconds at 44.1 kHz. This measurement was conducted at angles
from 0–360 in 60° increments.

5.4.1 Results. We evaluated the number of samples it took for
the sound source angle to converge around the actual angle by
examining the KDE maximum after each additional sample.

With the noise audio, localization required a mean of 12.7 sam-
ples (max: 19, min: 7). This number of samples was typically col-
lected within one frame. So the latency was just the computational
latency of 17.4 ms.

The speech audio needed on average 5.7X more samples to sta-
bilize, with a mean of 72.7 samples (max: 149, min: 24). The speech
contains more sparse localization information, and most measure-
ments (80%) did not havemeasurable microphone delays. As a result,
a mean of 15 frames is required; thus, the mean estimation time is
about 263 ms. However, estimation time can range approximately
from 70–500 ms, depending on the speech characteristics.

5.5 Power consumption
As the device is designed to be portable and powered by its own
power source or the phone’s battery, it is essential to understand its
power consumption. The power consumption of the whole system
was 28 mAh. The four microphones consumed 2.4 mA, while the
microcontroller consumed 11.7 mA. The audio codec and other
peripherals consumed the rest. Therefore, the device could run
speaker localization continuously for 18 hours with a 500 mAh bat-
tery. When powered by a smartphone, considering a representative
smartphone’s power consumption of 154 mA (3700 mAh battery
for 24 hours), this represents an additional 18 percent of the power
consumption.

5.6 Diarization accuracy with localization
In this section, we evaluate diarization with the SpeechCompass
hardware. A schematic view of the setup is shown in Figure 12A.
We set up four speech sources at 0, 90, 180 and 270 degrees to mimic
a turn-taking conversation with four talkers. The speech material is
from Librispeech [51]. A diffuse noise field is simulated using four
loudspeakers simultaneously playing uncorrelated noise content.
The noise types are babble noise (pub and cafeteria) as well as traffic
noise. One synthesized conversation lasts an average of 40 seconds
with each speaker speaking in turn (i.e., no overlap in the speech
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Figure 10: A) SpeechCompass azimuth angle measurement errors for speech and noise sound at different loudness levels. A
mean of 0–350° azimuth measurements is reported. B) Azimuth localization error at different angles. Data from one noise
and speech trail are shown. The multi-mic device was rotated around its axis from 0–350° while the source was stationary. A
15-second window was used for each estimate.

content). The noise level is set to create three signal-to-noise ratio
(SNR) levels of 6, 12, and 18 dB respectively. A fourth scenario
is generated in clean condition (i.e., no noise). For each scenario,
100 conversations are created, corresponding to about 1.2 hours of
active speech.

An example diarized segment overlaying TDOA values is shown
in Figure 12B, indicating the TDOA follows the speaker but still
has some noise.

In addition to the SNR sweep, we compared two microphone
configurations using respectively three and four microphones, re-
sulting in a total of eight experiments. We computed the diarization
error rate (DER) for each scenario using the PyAnnotate toolkit [12].
The DER is computed by summing the durations of false alarms,
missed detections, and speaker confusions, and then dividing it
by the total ground truth speech duration. The DER for the four-
microphone configuration performed consistently better than the
three-microphone one, across all four SNR conditions, with a rela-
tive DER improvement varying from 23 to 35% for an average of 32%
as can be seen in Table 12. A four-microphone configuration allows
for more unique microphone pairs (6) than a three-microphone
configuration (3). This provides extra TDOA information that can
be used by the diarization algorithm to segment and tag the speech
content between the four talkers more accurately.

6 User evaluation with frequent users of
mobile ASR: Lab study and online survey

To evaluate the usability of our approach, we decided to conduct an
in-person lab evaluation of the SpeechCompass phone case and the
speech-to-text application (described in Section 4.4), with frequent
users of mobile transcription technology. We first conducted a large-
scale online pilot study to inform the design of the in-person lab
evaluation, which we conducted with eight deaf or hard-of-hearing
participants, set up to mimic a realistic conversation scenario.

6.1 Large-scale, online survey (n=494)
In this survey, we use screenshots of our interactive UI prototypes
to solicit initial user feedback on the potential for our proposed
approach, to guide the design of a more realistic in-person lab study.

The study was conducted using the same Google Surveys de-
ployment and screening methodology as for the foundational study,

detailed in Section 3. The participants were shown different UI ren-
derings and were asked to rate them. The large-scale online survey
could only show static images of the interfaces, due to limitations
of the survey tool. Out of 985 respondents we focus our analysis on
the 494 participants who use captioning technology multiple times
per week or more frequently.

As shown in Figure 13A, the colored text was found to be valuable
by 60% of participants. Glyph indicators for speech direction, which
included arrow and circle+line indicators, were found valuable
by 70%. The Edge indicator and the mini map had a less positive
reception.

To better understand which glyph indicators were favored, we
also asked targeted questions about them, as shown in Figure 13B.
Circle + line was preferred by 13.1% more respondents than the
highlight box (45.1% vs 32.0%), and the arrow was preferred by
21.9% more respondents than the circle + line (51.2% vs 29.3%).

6.2 Lab study (n=8)
We recruited 8 participants from our institution who were frequent
users of captioning technology. Five were female, three were male,
and all were deaf or hard of hearing. One participant was 25–34
years old, four were 34–44, one was 45–53, and two were 65+ (we
are only allowed to collect age ranges at our institution).

The study took place in a quiet lab over approximately 60minutes
and used the phone-case prototype (Figure 2) with our mobile ASR
application (Figure 7). First, the participant was introduced to the
technology, prototype, and the purpose of the study. Then, the par-
ticipant was asked to fill out a background survey, which included
demographic questions and their current use and experienced chal-
lenges with transcription technology. Afterward, the participant
was introduced to different visualization scenarios with the Speech-
Compass application. The participant used the SpeechCompass
transcription while sitting between the two experimenters, as they
all sat around a small table with the SpeechCompass phone case in
the center. In each of the seven conditions, which ran for 5 minutes,
the experimenters sat across from each other and had short conver-
sations about different topics. The participants were instructed to
turn off hearing aid devices if they used any, and were asked to use
the SoundCompass UI and transcript to follow the conversation.
The experimenters’ casual conversations included topics like week-
end plans, hobbies, and the weather. The seven conditions, which
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Figure 11: Diarization experiment. A) Data collection setup for diarization testing. The SpeechCompass phone case is placed
on a small table in the center of the room. Head and torso simulators are used to play back speechmaterial. Four loudspeakers
are placed at the corners of the room to simulate a diffuse noise field. B) Example of TDOA data overlayed with diarization
from two speakers for a conversation snippet. The extracted speaker labels from TDOA precisely follow the conversation
turns. For TDOA, a frame size of 512 (11.6 ms) with no overlap at 44.1 KHz was used. Then, a running histogram of 522 ms was
applied to get speaker labels.
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Figure 12: Diarization error rate (DER) for three and four-
microphone configurations, across a sweep of SNR levels.

used the ASR, diarization, and localization functionality for differ-
ent visualization techniques, are shown in Figure 14 and presented
with more UI context in Figure 7. The conditions were:

(1) Transcription only. The transcribed text is shown in white
on a black background.

(2) Edge indicator. A circle (“dot”) that moves around the edge
of the screen to point to the currently active speaker. The
color of the dot changes based on the direction.

(3) Arrow indicator. A glyph using a colored arrow next to a
white text block. The glyph points in the direction of the
associated speech.

(4) Circle + line indicator. A glyph using a circle with a direc-
tional line next to a white text block. The glyph points in
the direction of the speech associated with the text.

(5) Mini map. A colored circle with a smaller circle (“dot”)
moves around its edge to point to the currently active speaker.
The color of the dot changes based on the direction.

(6) Colored text. The text is colored based on the direction that
the associated speech was coming from.

(7) Everything on. All indicators are turned on (except the
Circle + line, as it couldn’t be used simultaneously with the
arrow).

After participants had completed all conditions, they filled out a
form that asked them to rate how desirable each of the five visual

indicator styles (Edge indicator, Arrow, Circle + line, Colored map,
and Colored text) were on a 7-point Likert scale, from -3: Strongly
dislike to +3: Strongly like. Finally, theywere asked to rate the overall
value of directional feedback to the transcription experience, how
strongly they would recommend these features to users of mobile
captioning, and whether they had any general free-form feedback
about SpeechCompass.

6.3 Results
Mobile transcription apps (e.g., Android Live Transcribe) were the
most used communication technology for the participants. Specifi-
cally, three used them multiple times per day, one used them daily,
three used them multiple times per week, and one used them rarely.

75% of participants frequently experienced the scenario where
multiple people would get mixed up in the transcript (two multiple
times per day, two daily, two multiple times per week). All partici-
pants agreed that it was challenging to participate in conversations
when speech was combined from multiple people.

A Kruskal-Wallis (KW) test found a significant effect on partici-
pant preferences for visualization techniques (P=.014). The post-hoc
pair-wise analyses using the Wilcoxon test with Bonferroni correc-
tion did, however, not show statistical significance between any
pairs. Of the five visual indicator styles that participants experi-
enced, Colored text was the most well-received (mean (𝑥) = 2.625),
as it was rated positively by all the participants. TheArrow indicator
was also well-received (𝑥 = 1.125), with six positive, one negative,
and one neutral participant. Several participants noted that Arrow
and Colored text worked well together: "Arrows + color seem to be
most easier way to indicate the direction." (P2) and "The combination
of the colored text with the arrow was the most effective for me." (P7).

The other indicator styles received more mixed feedback. The
feedback for both Edge indicator (𝑥 = 0.25) and Circle + line (𝑥 =

−0.125) was split between four negative and four positive partici-
pants. Some participants were concerned that Edge indicator was
distracting and not sufficiently discreet: "I do prefer the tool be as
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Figure 13: Participants’ preferences for different visualization techniques in the online survey. A) Results indicating how
valuable the specific indicator would be for the user. B) Preferences for the specific indicators for speech direction.

Figure 14: Examples of seven visualization scenarios that participants experienced in the in-person study.

Figure 15: Boxplots of results of the in-person study. A) Participants’ preferences for different visualization techniques. B)
Overall opinions about augmented mobile ASR application.

discrete as possible and would perhaps choose to avoid bright colored
things moving around since this would be eye-catching and this kind
of attention is often undesired" (P3) and "Indicator moving around
the edge was distracting and causing a bit of eye strain" (P2). On the
other hand, another participant found this style particularly useful:
"the color dot moving to the speaker direction worked REALLY well"

(P1). For Circle + line, some participants struggled with its legibility:
"If the analog direction indicators were larger (and translucent, or set
behind)" (P8) and "The lines in a circle were a bit slower and not as
accurate (buggy)" (P5). The Mini map was rated positively by five
participants and negatively by three. The most favorable participant
stated: "this is also great for environmental awareness for those with
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single-sided hearing or no hearing at all." (P3) and a participant who
disliked the Edge indicator commented: "steady map in the corner
worked a bit better (P5)".

Overall, all participants agreed with the value of directional
feedback (𝑥 = 2.88, seven Strongly agree:+3 and one Agree:+2)
and would recommend these features to other users of captioning
technology (𝑥 = 2.63, five Strongly agree:+3 and three Agree:+2):
"I really liked that almost immediately I could tell that there was a
speaker change, so that as soon as the text started to show up, I could
better contextualize that text as attributed to a new speaker." (P1), "I’m
very happy to see this tool being developed, it’s a great addition to
other speech recognition tools!" (P3), and "This prototype is definitely
a life changer and I strongly believe that it will improve the quality
of access to communication with speakers for many users" (P6).

6.4 Discussion
Consistent with the large-scale survey, the value of the diarization
and localization features was immediate to all users. The partici-
pants were asked if directional guidance would be valuable in their
mobile transcription experience. All eight users agreed. Also, all
eight users would recommend this feature to mobile captioning
users.

While the large-scale survey helped inform our testing and ex-
clude conditions (e.g., Highlight box), the lab study allowed us to
more rigorously evaluate the techniques in a realistic scenario. This
difference became significant for the Edge indicator and Mini map,
where issues, such as discreetness and distracting aspects, became
evident during live usage.

The results suggest that the combination of Colored text and
Arrow would meet the preferences of most users, thanks to the
balance of directional encoding and clarity. The arrow has redun-
dant benefits too, since colored text might not always be reliably
visible depending on lighting and screen conditions (e.g., strong
sunlight, or dim display) and might also not be usable for colorblind
users. The mixed feedback for other techniques indicates that the
interface may also benefit from mechanisms that would allow users
to customize the visualization style. Such customization could also
apply to rendering properties, such as color, transparency, and line
thickness, as some participants found Circle + line particularly diffi-
cult to interpret. In both the large-scale survey and the in-person
lab study, the Arrow was preferred over Circle + line. Through more
customization options and extended usage in their daily lives, par-
ticipants will be able to provide more nuanced feedback about these
techniques.

7 Limitations and future work
In this work, the microphone array topology was designed for
experimentation and integration with mobile phones. In the future,
we plan to explore other form factors such as smart glasses and
smartwatches, where multiple microphones could also be used.
To do so, we plan to create a microphone array platform for rapid
prototyping where microphone topology can be easily reconfigured
and customized with a user-friendly UI and software library.

Localization needs to be accurate in everyday scenarios that may
suffer from external noise and interference sources. We plan to add
machine learning approaches to improve the noise robustness of

our current localization, which is based on classical linear signal
processing.

In our user studies, errors due to background noise were iden-
tified as a major issue with mobile ASR. In future work, back-
ground noise could be suppressed by using a steerable beamformer,
which would benefit from more microphones. In our experimen-
tation with classical beamforming techniques like filter-and-sum
beamformer [7] and Minimum Variance Distortionless Response
(MVDR) [64], we achieved a few dB SNR (signal-to-noise ratio)
improvement with our microphone geometry. With the recent ad-
vances in neural beamformers [41, 65], which are trained beam-
formers, higher SNRs could be possible.

We are interested in scaling up the user evaluation, both with
a larger set of participants and over longer time periods and in
ecologically valid settings. We therefore plan to conduct longitudi-
nal user evaluations with frequent users of mobile ASR to further
advance our understanding of the usability of this approach in the
wild.

8 Conclusion
Motivated by a foundational large-scale survey with 263 users fre-
quent users of captioning technology, this work demonstrates how
microphone array signal processing can supplement ASR by mea-
suring and visualizing the spatial dimension of audio. Although
ASR technology has greatly improved, diarization and localization
features are not commonly available. To investigate the potential
of enabling mobile captioning for group conversations, we imple-
mented a low-latency 360° localization algorithm that can run on
general-purpose low-power microcontrollers, and a custom sound
perception hardware solution with four microphones.

Our technical evaluation of localization and diarization with
the SpeechCompass microphone array demonstrates benefits over
the traditional single-microphone configuration and pure machine-
learning-based approaches.

We introduced a mobile captioning app that uses sound localiza-
tion to diarize and visualize speech directions for group conversa-
tions. The integration with our embedded software and hardware
brought new capabilities to mobile ASR, including sound source
location, speaker diarization, and user control of the diarization,
allowing the suppression of specific speech directions. Using the
developed mobile phone application, we conducted an in-person
study with frequent users of mobile ASR technology to gather feed-
back on the techniques and different visualization styles, and their
potential for improving the captioning of group conversations. All
the participants found the diarization, localization, and visualization
features to be useful, and particularly appreciated the combination
of a directional arrow and colored text.

This work demonstrates that low-power microphone array pro-
cessing can be integrated into new and existing mobile devices,
thereby leveraging audio’s natural spatial properties to enhance
audio experiences and the understanding of speech.

In the future, we hope that our approach will inspire the wide-
spread adoption of advanced microphone arrays that natively un-
lock the potential of spatial sound processing and perception in
mobile and wearable devices.
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A Appendix
A.1 Localization algorithm
The following GCC-PHAT formulation was used:

𝐺 (𝑓 ) = F −1
(

𝑋1 (𝑓 ) [𝑋2 (𝑓 )]∗

( |𝑋1 (𝑓 ) [𝑋2 (𝑓 )]∗ |)−0.3

)
, (1)

where 𝑋1 (𝑓 ) and 𝑋2 (𝑓 ) are the Fourier transforms of the two
microphone signals, []∗ denotes complex conjugate, and F −1 is the
inverse Fourier transform. 𝐺 (𝑓 ) is the resulting cross-correlation.
We use partial normalization to the power of -0.3 since it provides
more robustness to noise by giving less weight to delays around
end-fires, which are more likely due to noise. Partial normalization
deviates from the original GCC-PHAT as it uses full normalization
to weigh all delays equally.

The time delay between the two microphones is extracted from
the cross-correlation in the following way:

Δ𝑡 =
𝑎𝑟𝑔𝑚𝑎𝑥 (𝐺 (𝑓 ))

𝑓𝑠
, (2)

Where 𝑓𝑠 is the audio sampling frequency (44.1 kHz), and𝑎𝑟𝑔𝑚𝑎𝑥

is the index of the maximum peak in the cross-correlation, corre-
sponding to delay in samples.

To convert the time delay into azimuth angle (in the microphone
plane), the microphone spacing needs to be known to calculate the
maximum delay:

Δ𝑡𝑚𝑎𝑥 =
Δ𝑑

𝑐
, (3)
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where 𝑐 = 343𝑚/𝑠𝑒𝑐 is the speed of sound, and Δ𝑑 is the distance
between the microphones.

Assuming far-field sound waves, we can use a simple formula to
calculate the azimuth angle. The far-field approximation assumes
planar sound waves and is valid approximately if the microphone

is a meter or more away from the source.

𝜃𝑎𝑧𝑖𝑚𝑢𝑡ℎ = 𝑐𝑜𝑠−1 ( Δ𝑡

Δ𝑡𝑚𝑎𝑥
) (4)
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